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Abstract—With the increasing air traffic density and complexity 
in traditional controlled airspace, and the envisioned large 
volume vertical takeoff and landing (VTOL) operations in low-
altitude airspace for personal air mobility or on-demand air taxi, 
an autonomous air traffic control system (a fully automated 
airspace) is needed as the ultimate solution to handle dense, 
complex and dynamic air traffic in the future. In this work, we 
design and build an artificial intelligence (AI) agent to perform 
air traffic control sequencing and separation. The approach is to 
formulate this problem as a reinforcement learning model and 
solve it using the hierarchical deep reinforcement learning 
algorithms. For demonstration, the NASA Sector 33 app has 
been used as our simulator and learning environment for the 
agent. Results show that this AI agent can guide aircraft safely 
and efficiently through “Sector 33” and achieve required 
separation at the metering fix.  

Keywords: Artificial Intelligence, Autonomous Air Traffic 
Control, Hierarchical Deep Reinforcement Learning 

I.  INTRODUCTION 

A. Motivation  
The original proposal of an autonomous air traffic control 

system was from Heinz Erzberger and his NASA colleagues, 
where they believe that a fully automated system, referred as 
the Advanced Airspace Concept (AAC), is the ultimate solution 
to accommodate dense, complex and dynamic air traffic in the 
controlled airspace in the future. The core element of the AAC 
is called the Autoresolver. It was designed to detect and resolve 
conflicts in en route and terminal airspace. In their papers [1, 2, 
3], such an autonomous air traffic control system for automated 
sequencing and separation is expected to augment human air 
traffic controllers to increase airspace capacity and enhance 
operation safety. 

In the recent proposals for low-altitude airspace operations, 
including UAS Traffic Management (UTM) [4, 5, 6] for 
remote-piloted or unmanned autonomous drone operations and 
Urban Air Mobility (UAM) [7, 8, 9, 10] for vertical takeoff and 
landing (VTOL) personal air travel or urban air taxi operations, 
an autonomous air traffic control system is needed to 
communicate with future intelligent aircraft, facilitate on-board 

autonomy or human operator decisions, and cope with 
envisioned high-density and on-demand air traffic by providing 
automated sequencing and separation advisories. 

The inspiration of this paper is twofold.  First, the authors 
were amazed by the fact that an artificial intelligence agent 
called AlphaGo built by DeepMind defeated the world 
champion Ke Jie in three matches of Go in May 2017 [11]. 
This notable advance in AI field demonstrated the theoretical 
foundation and computational capability to potentially augment 
and facilitate human tasks with intelligent agents and AI 
technologies. Therefore, the authors want to apply the most 
recent AI frameworks and algorithms to re-visit the 
autonomous air traffic control idea. Second, the authors were 
granted the software called NASA Sector 33 for education and 
outreach purposes [12]. It is an air traffic control game 
designed to interest students in air transportation and aviation 
related careers. It contains 35 problems featuring two to five 
aircraft. The player needs to apply speed and route controls 
over these aircraft to satisfy sequencing and separation 
requirements, as well as, minimize delay. The authors decide to 
use this software as the game environment and simulator for 
performance evaluation of our proposed framework and 
algorithms. 

In this paper, a hierarchical deep reinforcement learning 
framework is proposed to enable autonomous air traffic 
sequencing and separation, where the input of this agent is the 
air traffic controller’s screen. Through the computer vision 
techniques, the agent will “see” the screen, comprehend the 
air traffic situation, and perform online sequential decision 
making to select actions including speed and route option for 
each aircraft in real time with ground-based computation. 
Unlike Erzberger’s approach, in our paper the reinforcement 
learning agent integrates conflict detection and conflict 
resolution together via a deep reinforcement learning 
approach. Like Erzberger, we also assume that the computed 
speed and route advisories will be sent from ground to aircraft 
via data link. The series of actions will guide the aircraft 
quickly through “Sector 33” and maintain required safe 
separation. Our proposed framework and algorithms provide 
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another promising potential solution to enable autonomous air 
traffic control system. 

B. Related Work 
There have been many important contributions to the topic 

of autonomous air traffic control. One of the most promising 
and well-known lines of work is the Autoresolver designed and 
developed by Heinz Erzberger and his NASA colleagues [1, 2, 
3]. It employs an iterative approach, sequentially computing 
and evaluating candidate trajectories, until a trajectory is found 
that satisfies all of the resolution conditions. The candidate 
trajectory is then output by the algorithm as the conflict 
resolution trajectory. The Autoresolver is a physics based 
approach that involves separate components of conflict 
detection and conflict resolution. It has been tested in various 
large-scale simulation scenarios. In addition, the Autoresolver 
is being verified and validated by NASA researchers using 
formal methods. 

Reinforcement learning and deep Q-networks have been 
demonstrated to play games such as Go, Atari and Warcraft 
[13, 14, 15]. The results from these papers show that a well-
designed, sophisticated AI agent is capable of performing high-
level tasks, as well as, learning complex strategies. Therefore, 
we are encouraged to apply the reinforcement learning 
framework to solve an air traffic control game and set up an 
environment for the AI agent to learn the fundamental air 
traffic control tasks, i.e., aircraft sequencing and separation. 

In this paper, the reinforcement learning framework and a 
novel hierarchical deep agent algorithm are developed to solve 
the sequencing and separation problem with delay 
minimization for autonomous air traffic control. The results 
show that the algorithm has very promising performance. 

The structure of this paper is as follows: in Section II, the 
background of reinforcement learning and deep Q-network will 
be introduced. In Section III, the description of the problem 
and its mathematical formulation of reinforcement learning are 
presented. Section IV presents our designed hierarchical deep 
agent algorithm to solve this problem. The numerical 
experiment and results are shown in Section V. And Section VI 
concludes this paper. 

II. BACKGROUND 

A. Reinforcement Learning 
Reinforcement learning is one type of sequential decision 

making where the goal is to learn how to act optimally in a 
given environment with unknown dynamics. A reinforcement 
learning problem involves an environment, an agent, and 
different actions the agent can take in this environment. The 
agent is unique to the environment and we assume the agent is 
only interacting with one environment. Let t represent the 
current time, then the components that make up a 
reinforcement learning problem are as follows: 

• S - The state space S is a set of all possible states in the 
environment 

• A - The action space A is a set of all actions the agent 
can take in the environment 

• r(st, at, st+1) - The reward function determines how 
much reward the agent is able to acquire for a given (st, 
at, st+1) transition 

• γ Î [0, 1] - A discount factor determines how far in the 
future to look for rewards.  As γ ® 0, only immediate 
rewards are considered, whereas, when γ ® 1, future 
rewards are getting prioritized. 

S contains all information about the environment and each 
element st+1 can be considered a snapshot of the environment at 
time t. The agent accepts st and with this, the agent then 
decides an action, at. By taking action at, the state is now 
updated to st+1 and there is an associated reward from making 
the transition from st ® st+1. How the state evolves from st ® 
st+1 given action at is dependent upon the dynamics of the 
system, which is unknown. The reward function is user 
defined, but needs to be carefully designed to reflect the goal 
of the agent. Fig. 1 shows the progression of a reinforcement 
learning problem. 

 
Figure 1. Progression of a reinforcement learning problem within an 

environment. 

From this framework, the agent is able to learn the optimal 
decisions in each state of the environment by maximizing a 
cumulative reward function. We call the sequential actions the 
agent makes in the environment a policy. Let π represent some 
policy and T represent the total time for a given environment, 
then the optimal policy can be defined as: 

π * = argmaxπ E[ (r(
t=0

T

∑ st ,at , st+1) |π )]. (1)
 

If we define the reward for actions we deem “optimal” very 
high, then by maximizing the total reward, we have found the 
optimal solution to the problem. 

B. Q-Learning 
One of the most fundamental reinforcement learning 

algorithms is known as Q-learning. This popular learning 
algorithm was introduced by Watkins and the goal is to 
maximize a cumulative reward by selecting an appropriate 
action in each state [16]. The idea of Q-learning is to estimate a 
value Q for each state and action pair (s, a) in an environment 
that directly reflects the future reward associated with taking 
such an action in this state. By doing this, we can extract the 
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policy that reflects the optimal actions for an agent to take. The 
policy can be thought of as a mapping or a look-up table, 
where at each state, the policy tells the agent which action is 
the best one to take. During each learning iteration, the Q-
values are updated as follows: 

Q(st ,at )←Q(st ,at )+
α (r + γ maxat+1Q(st+1,at+1)−Q(st ,at )). (2)  

In (2), α represents the learning rate, r represents the 
reward for a given state and action, and γ represents the 
discount factor. One can see that in the max Q(st+1, at+1) term, 
the idea is to determine the best possible future reward by 
taking this action. 

C. Deep Q-Network (DQN) 
While Q-learning performs well in environments where the 

state-space is small, as the state-space begins to increase, Q-
learning becomes intractable. It is because there is now a need 
for more experience (more game episodes to be played) in the 
environment to allow convergence of the Q-values. To obtain 
Q-value estimates in environments where the state-space is 
large, the agent must now generalize from limited experience 
to states that may have not been visited [17]. One of the most 
widely used function approximation techniques for Q-learning 
is deep Q-networks (DQN), which involves using a neural 
network to approximate the Q-values for all the states. With 
standard Q-learning, the Q-value was a function of Q(s, a), but 
with DQN the Q-value is now a function of Q(s, a, θ), where θ 
is the parameters of the neural network. Given an n-
dimensional state-space with an m-dimensional action space, 
the neural network creates a map from Ân ® Âm. As 
mentioned by Van Hasselt et al., incorporating a target network 
and experience replay are the two main ingredients for DQN 
[18]. The target network with parameters θ-, is equivalent to 
the online network, but the weights (θ-) are updated every τ 
time steps. The target used by DQN can then be written as: 

Yt
DQN = rt+1 + γ maxat+1Q(st+1,at+1;θt

− ). (3)
 

The idea of experience replay is that for a certain amount of 
time, observed transitions are stored and then sampled 
uniformly to update the network. By incorporating the target 
network, as well as, experience replay, this can drastically 
improve the performance of the algorithm [18]. 

D. Double Deep Q-Network (DDQN) 
In Q-learning and DQN there is the use of a max operator 

to select which action results in the largest potential future 
reward. Van Hasselt et al. showed that due to this max 
operation, the network is more likely to overestimate the 
values, resulting in overoptimistic Q-value estimations [19]. 
The idea introduced by Hasselt was to decouple the max 
operation to prevent this overestimation to create what is called 

double deep Q-network (DDQN) [20]. To decouple the max 
operator, a second value function must be introduced, 
including a second network with weights θ¢.  During each 
training iteration, one set of weights determines the greedy 
policy and the other then determine the Q-value associated. 
Formulating (3) as a DDQN problem: 

Yt
DDQN = rt+1 + γQ(st+1,argmaxat+1Q(st+1,at+1;θt );θt

' ). (4)
 

In (4), it can be seen that the max operator has been 
removed and we are now including an argmax function to 
determine the best action due to the online weights. We then 
use that action, along with the second set of weights to 
determine the estimated Q-value. 

III. PROBLEM FORMULATION 

A. Problem Statement 
In real world practice, the air traffic controllers in en route 

and terminal sectors are responsible for sequencing and 
separating aircraft. In our research, we used the NASA Sector 
33 web-based application (a video game) as our air traffic 
control simulator. The application has a set of problems whose 
solutions are difficult to find. To evaluate the performance of 
our hierarchical deep agent algorithm, we selected three 
different game scenarios with various difficulty levels and 
constraints. 

1) Objective: The objective in the NASA Sector 33 game 
environment is to maintain a safe separation between aircraft, 
resolve conflict, and minimize delay by making appropriate 
route changes and providing speed advisories. Ultimately, we 
want to guide each aircraft quickly through the metering fix. 
Unlike the real-world air traffic control scenario, in this game 
environment there is also a unique “final metered position” 
right after the metering fix for each aircraft. It is not too 
difficult for a good human player to obtain a feasible solution 
in the game, where the aircraft are close to their final metered 
position, safe separation is maintained, and conflicts are 
resolved. In order to obtain the optimal solution in this 
environment, the aircraft have to maintain safe separation, 
resolve conflict, and arrive at their final metered position with 
no delay. However, obtaining the optimal solution in this 
environment is much more difficult than obtaining the feasible 
solution, due to the fact that each aircraft has to follow the 
optimal speed and route at every time-step. If one speed 
change is made incorrectly, then the optimal solution will not 
be achieved. 

2) Constraints: There are many constraints in the NASA 
Sector 33 game environment to help resemble a real-world air 
traffic environment. For each problem, there is a fixed number 
of aircraft. For some problems, there is only two aircraft, 
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some there is three aircraft, and this number increased to a 
maximum of five aircraft. The next constraint imposed a limit 
on the number of route changes for a given aircraft. For 
example, one problem might allow for a single aircraft to 
change routes, while another problem would allow both 
aircraft to change routes, thus increasing the complexity. 
Weather also imposed an additional limit on the number of 
aircraft route changes. In some of the problems, there is a 
storm blocking one of the routes, so now there is no option to 
select the corresponding route anymore. One of the strictest 
constraints in the game is time. In each problem, there is a 
timer for how long the episode lasts and there is only enough 
time for the optimal solution to be obtained. This meant that to 
obtain the optimal solution, the aircraft has to be at their final 
metered position when the timer is at 0:00, otherwise it is not 
an optimal solution. The last constraint in the game is the 
individual speed of each aircraft. Each aircraft has the ability 
to fly at six different speeds ranging from 300 knots to 600 
knots. 

B. Reinforcement Learning Formulation 
Here we formulate the NASA Sector 33 environment as a 

reinforcement learning problem and define the state-space, 
action-space, and reward functions for the parent agent, as well 
as, the child agent. 

1) State Space: A state contains all the information the AI 
agent needs to make decisions. The state information was 
composed of different information for the parent agent and 
child agent. For the parent agent, the information included in 
the state was a screen-shot of the game screen. For the child 
agent, if we let i represent a given aircraft, then the 
information included in the state was: aircraft positions (xi, yi), 
aircraft speeds vi, and route information. Route information 
included the combination of routes for both aircraft, defined as 
Cj, where j represents a given route combination. From this, 
we can see that the state-space for the parent agent is constant, 
since it only depends on the number of pixels in the screen-
shot. Suppose there are m ´ m pixels in the screen-shot and n 
number of aircraft, then the state-space can be represented 
with m ´ m numbers for the parent agent and 2 ´ n + n + 1 for 
the child agent. Fig. 2 shows an example of a state in the 
NASA Sector 33 game environment. 

If we consider Fig. 2 as an example, we can acquire all of 
the state information we need from the game-screen. For the 
parent agent, the state will be represented as follows: 

SP = (p1, p2, p3,..., pm × m ),  
where pk represents the intensity tuple of pixel k.  For each 
pixel in the game screen, there is an associated pixel intensity 
tuple (red, green, blue) that contains the intensity for each color 

ranging from [0, 255]. For example, the color green is 
represented as (0, 255, 0), the color blue is represented as (0, 0, 
255) and the color red is represented as (255, 0, 0). For the 
child agent, the state is defined as: 

SC = (x1, y1, x2, y2,v1,v2,Cj ),  
where the subscript represents a specific aircraft and j is the 
combination of route that the aircraft will take. 

 
Figure 2. Example of a state in the NASA Sector 33 game environment. 

2) Action Space: At each time-step, the parent agent and 
child agent can make a decision to change the route of the 
aircraft and change the speeds of the aircraft, respectively. The 
only difference is the decision time-step for the parent agent 
and child agent. The parent agent takes one action every 
episode, where an episode is defined as an entire play through 
the game. The child agent takes one action every four seconds 
within the episode to provide more control over the aircraft 
once the route combination is determined. The action-space 
for the parent agent can be defined as follows: 

AP = (C1, ... ,Cj ) ∀ j,
 

where j is the number of route combinations for the aircraft. If 
we consider the example in Fig. 2, the action-space for the 
parent agent will be: 

AC = (C1,C2,C3,C4 ).  
This is because each aircraft can take two unique routes, 
which equates to four unique route combinations. 

For the child agent, the action-space is defined as: 

AC = (U1, ... ,Uk ) ∀ k,  
where we define U as all of the possible combinations of 
speeds for the aircraft and k as a unique speed combination. 

3) Terminal State: Termination in the episode could be 
achieved in three different ways: 
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• Goal reached (optimal) - All aircraft made it to their 
final metered position, maintained safe separation, and 
avoided collision. This meant that: 

| gxi − xi | = 0, ∀ i  
• Out of time (feasible) - The aircraft did not arrive at 

their final metered position, but might have given more 
time. 

| gxi − xi | > 0, ∀ i  
• Collision - The aircraft collided with one another. 

(yj − yi )
2 + (x j − xi )

2 < δ ,∀ i ≠ j
 

where δ is in terms of the pixel distance, and gx is defined 
as the set of goal positions for each aircraft. 

By observing the current state, we were able to see if any of 
the terminal states were obtained. For example, let the current 
state be defined as (x1, y1, x2, y2, v1, v2, Cj), then if 

| gx1 − x1 | + | gx2 − x2 | = 0,  
we have obtained the optimal solution to the problem. 

4) Reward Function: The reward function for the parent 
agent and child agent needed to be designed to reflect the goal 
of this paper: safe separation, minimizing delay of arriving at 
final metered position, and choosing the optimal route 
combination. We were able to capture our goals in the 
following reward functions for the parent agent and child 
agent: 

Parent agent 

rP =
1

| gxi − xi |
i=1

N

∑
 

Child agent 

rC = 0.001 vi − 0.6,
i=1

N

∑
 

where N is the number of aircraft. In the reward for the child 
agent, we included two constants (0.001 and -0.6). The reason 
for adding the factor of 0.001 is to scale the rewards between [-
1, 1]. The addition of 0.6 is to penalize slower aircraft speeds 
and to reward faster aircraft speeds. These rewards were 
obtained at each time-step for the parent and child agent. If a 
terminal state was reached, then there was an additional reward 
that was added for each scenario: -10 for collision, -3 for out of 
time, and +10 for optimal solution. With these reward 
functions, the AI agent will prioritize choosing the route 
combination that allows the aircraft to arrive as quickly as 

possible, as well as, choosing the fastest speed for the aircraft 
without creating any conflict. 

IV. SOLUTION APPROACH 
To solve the NASA Sector 33 environment, we designed 

and developed a novel reinforcement learning algorithm called 
the hierarchical deep agent. In this section, we introduce and 
describe the algorithm, then we explain why this algorithm is 
needed to solve this game. 

A. Hierarchical Deep Agent 
To formulate this environment as a reinforcement 

learning problem, we found that we were unable to formulate 
this environment as a typical single agent environment due to 
the non-Markovian property that this problem involves. The 
route change for an aircraft can only happen during a small 
window of time, therefore, if formulated as a single agent 
problem, the action of changing routes would not be chosen 
nearly as often leading to a very slow convergence time. 

To solve this problem, we used a parent agent who has a 
second agent nested within. The parent agent will take an 
action (changing route) and then the child agent will control 
the actions of changing speeds. One of the important 
differences between the parent and child agents is the state-
space. The state-space for the parent agent can be represented 
as screen pixels or in terms of the aircraft positions and 
speeds. The child agent has the same state as the parent agent 
if we use the aircraft positions and speeds, but we also add 
another dimension to the child agent state. This new 
dimension we add is the action of the parent agent. 

We do this to decouple the action sets of changing route 
and changing speed. Then we can have the parent agent take 
one action in the beginning of the episode, followed by the 
child agent adding this action to its state and proceeding with 
the actions of changing speed. Fig. 3 provides a diagram of 
the progression of information from the parent agent to the 
child agent. We can see the initial state sP is input into the 
parent agent, then the parent agent takes action a. From 
there, action a is now included into the child agent state, sC. 
From there, the child agent is able to make all successive 
decisions with this information. Algorithm 1 provides a 
pseudocode for formulating a hierarchical deep reinforcement 
learning problem. 

 

Figure 3. Progression from Parent agent to Child agent. 
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Algorithm 1 Hierarchical Deep Agent  
Initialize: Parent Agent 
Initialize: Child Agent 
Initialize: sP 

  reward = 0 
  number of episodes = n 
for i = 1 to n do 

aP = ChooseAction(ParentAgent) 
sC = [sP , aC] 
repeat 

ac = ChooseAction(ChildAgent) 
s¢, rC = SimulateEnvironment 
receive parent agent reward = rP (s¢) 
reward = reward + r 
update(ChildAgent) 

until Terminal 
update(ParentAgent) 

    end for  
 

B. Overall Approach 
In our formulation of the hierarchical deep agent, we 

decided to use the game screen (raw pixels) as input for the 
parent agent. By using the game screen, the parent agent can 
“see” and “comprehend” the air traffic situation by abstracting 
the important features through the hidden layers of double deep 
Q-network (DDQN), such as relative aircraft positions without 
explicitly providing the information. Then the parent agent is 
able to make route selections for all aircraft at the output layer. 
In this way, the parent agent DDQN integrates the conflict 
detection task (“seeing” and “comprehension”) and first part of 
conflict resolution task of route selection (“decision making”). 
Fig. 4 shows an illustrative example of the parent agent 
architecture. In Fig. 4, the “hidden layer” is a simplified 
illustration to represent the entire DDQN. In this specific game 
scenario shown in Fig. 4, we have two aircraft to control. The 
upper one has two route options, and the lower one has only 
one route option. Therefore, the total route combinations for 
these two aircraft is two. 

 

Figure 4. Illustrative example of the decision-making process for the parent 
agent. 

With the route combination selected by the parent agent, 
the child agent will include this information to its current state 

and proceed with learning how to compute the speed 
adjustment advisories. Fig. 5 illustrates a specific example for 
the child agent. Here we define the hidden layer as the entire 
DDQN representation introduced, and the output as the speed 
controls the child agent can implement. In our case study, the 
output layer is the speed combinations of the aircraft. 

 

Figure 5. Illustrative example of the decision-making process for the child 
agent. 

V. NUMERICAL EXPERIMENTS 

A. Interface 

To test the performance of our proposed algorithm, an 
interface was built between the web-based NASA Sector 33 
application and our code so that the AI agent can operate all 
functions in the game. The state-space information for the 
agent was obtained using computer vision techniques. By 
capturing screen-shots of the game screen every four seconds, 
we could then extract the aircraft position in terms of the (xi, 
yi) pixel location. By game design, when restarting a particular 
problem, all objectives were the same: final aircraft metered 
positions, aircraft initial position, and available speed changes 
did not change. We also included an additional feature that is 
not available by default in the web-based version of NASA 
Sector 33. This feature is to terminate the game if two aircraft 
are within in a 30-pixel radius (aircraft collision). 

B. Environment Setting 
For each problem in NASA Sector 33, we discretized the 

environment into episodes, where each run through the 
game counted as one episode. We also introduced a time-
step, ∆t, so that after the child agent selected an action, the 
environment would evolve for ∆t seconds until a new 
decision was made. This was to allow for a noticeable 
change in state from st ® st+1, as well as, allow the game to 
be played at different speeds. There were many different 
parameters that had to be tuned and selected to achieve the 
optimal solution in this game. We implemented the DDQN 
concept that was mentioned earlier, with a hidden layer of 
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64 nodes. We used an e-greedy search strategy for both the 
parent and child agents. For the child agent, e started at 1.0 
and exponentially decayed until 0.01. For the parent agent, 
e also started at 1.0 and exponentially decayed to 0.15. The 
reason for the parent agent’s e decaying until 0.15 was to 
allow for the slightly larger probability of exploring the other 
routes even when many episodes had already been run. In 
harder game environments, we could obtain a near optimal 
feasible solution on the non-optimal route. By forcing the 
lower bound on e, this ensured that we were able to converge 
to the optimal route. We used a tanh activation function for 
the child agent and the ReLU activation function for the 
parent agent. This was because for the parent agent, instead of 
using a multi-layer perceptron network, we used a 
convolutional neural network whose input was the current 
game screen. Our memory length for both the parent and the 
child agents was set to 500,000 to allow for a large number of 
the previous transitions to be made available for training. 

C. Case Study: two aircraft with four routes 
In this problem, we considered two aircraft where both 

aircraft have the ability to change routes. Fig. 6 shows the 
game screen for this problem. With both aircraft able to change 
routes, this leads to four different route combinations and 
greatly increases the complexity of the problem. What also 
makes this problem interesting is that even if the aircraft take 
the incorrect route, a near-optimal feasible solution can be 
obtained which makes choosing the route more difficult. 

 

Figure 6. In the case study, both aircraft in this problem have the ability to 
change routes. 

By training the AI agent on around 7000 episodes and 
choosing a time-step of four seconds, we were able to obtain 
the optimal solution for this problem. The number of episodes 
required to achieve the optimal solution was due to the 
complexity of the problem and the fact that different routes 
could achieve very similar results. It is also important to note 
that in this problem, if we chose a different route, the AI agent 
would achieve the optimal solution specific for that route. 

Therefore, in a real-world scenario, if there was a last-minute 
decision to change from the optimal route to a feasible route, 
the AI agent would be able to maintain safe separation and 
minimize delay on this new route. Fig. 7 shows the game 
screen after obtaining the optimal solution to this problem. 

D. Algorithm Performance 
In this section, we analyze the algorithm’s performance on 

the two-aircraft problem. Fig. 8 shows the score per episode 
during training for the case study. 

We can see that throughout training the score tends to 
oscillate frequently, but is on an increasing trend. This is due to 
the value of e being close to 1 and as this value decreases 
through the episodes, the score increases significantly. We 
define the score in Fig. 8 to be the cumulative reward at the end 
of each episode. The score involves the reward of the child 
agent at each time step, as well as, the termination rewards: -10 
for collision, -3 for out of time, and +10 for optimal solution. 

           

Figure 7. Problem 2-3 of the NASA Sector 33 game environment after 
obtaining the optimal solution. We can see that both aircraft are on their 
correct terminal when there is 0:00 left on the timer. 

 

Figure 8. Agent’s score throughout the training process for the case study. We 
can see that as the episode number increases, the score increases as well. 
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VI. CONCLUSION 
A novel hierarchical deep reinforcement learning algorithm 

is proposed in this paper to sequence and separate aircraft as a 
core component in an autonomous air traffic control system. 
The problem is formulated in a reinforcement learning 
framework with the actions of changing aircraft route and 
adjusting aircraft speed. The problem is then solved by using 
the hierarchical deep agent algorithm. Numerical experiments 
show that this proposed algorithm has promising performance 
to help aircraft maintain safe separation, resolve conflict, and 
arrive at their final metered positions in a case study. The 
proposed algorithm provides a potential solution framework to 
enable autonomous sequencing and separation for a fully 
automated air traffic control system in a structured airspace. 

According to our knowledge, the major contribution of this 
research is that we are the first research group to investigate the 
feasibility and performance of autonomous aircraft sequencing 
and separation with deep reinforcement learning framework to 
enable an automated, safe and efficient airspace. In addition, 
we propose the novel hierarchical deep reinforcement learning 
architecture, which is demonstrated capable of solving 
complex online sequential decision-making problems. The 
promising results from our numerical experiments encourage 
us to conduct future work on more advanced air traffic control 
simulators that can model operational uncertainties. 
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