
ICRAT 2018

Autonomous Aircraft Sequencing and Separation with
Hierarchical Deep Reinforcement Learning

Marc Brittain
Aerospace Engineering Department

Iowa State University
Ames, IA, USA

mwb@iastate.edu

Peng Wei
Aerospace Engineering Department

Iowa State University
Ames, IA, USA

pwei@iastate.edu

Abstract—With the increasing air traffic density and complexity
in traditional controlled airspace, and the envisioned large
volume vertical takeoff and landing (VTOL) operations in low-
altitude airspace for personal air mobility or on-demand air taxi,
an autonomous air traffic control system (a fully automated
airspace) is needed as the ultimate solution to handle dense,
complex and dynamic air traffic in the future. In this work, we
design and build an artificial intelligence (AI) agent to perform
air traffic control sequencing and separation. The approach is to
formulate this problem as a reinforcement learning model and
solve it using the hierarchical deep reinforcement learning
algorithms. For demonstration, the NASA Sector 33 app has
been used as our simulator and learning environment for the
agent. Results show that this AI agent can guide aircraft safely
and efficiently through “Sector 33” and achieve required
separation at the metering fix.

Keywords: Artificial Intelligence, Autonomous Air Traffic
Control, Hierarchical Deep Reinforcement Learning

I. INTRODUCTION

A. Motivation
The original proposal of an autonomous air traffic control

system was from Heinz Erzberger and his NASA colleagues,
where they believe that a fully automated system, referred as
the Advanced Airspace Concept (AAC), is the ultimate solution
to accommodate dense, complex and dynamic air traffic in the
controlled airspace in the future. The core element of the AAC
is called the Autoresolver. It was designed to detect and resolve
conflicts in en route and terminal airspace. In their papers [1, 2,
3], such an autonomous air traffic control system for automated
sequencing and separation is expected to augment human air
traffic controllers to increase airspace capacity and enhance
operation safety.

In the recent proposals for low-altitude airspace operations,
including UAS Traffic Management (UTM) [4, 5, 6] for
remote-piloted or unmanned autonomous drone operations and
Urban Air Mobility (UAM) [7, 8, 9, 10] for vertical takeoff and
landing (VTOL) personal air travel or urban air taxi operations,
an autonomous air traffic control system is needed to
communicate with future intelligent aircraft, facilitate on-board

autonomy or human operator decisions, and cope with
envisioned high-density and on-demand air traffic by providing
automated sequencing and separation advisories.

The inspiration of this paper is twofold. First, the authors
were amazed by the fact that an artificial intelligence agent
called AlphaGo built by DeepMind defeated the world
champion Ke Jie in three matches of Go in May 2017 [11].
This notable advance in AI field demonstrated the theoretical
foundation and computational capability to potentially augment
and facilitate human tasks with intelligent agents and AI
technologies. Therefore, the authors want to apply the most
recent AI frameworks and algorithms to re-visit the
autonomous air traffic control idea. Second, the authors were
granted the software called NASA Sector 33 for education and
outreach purposes [12]. It is an air traffic control game
designed to interest students in air transportation and aviation
related careers. It contains 35 problems featuring two to five
aircraft. The player needs to apply speed and route controls
over these aircraft to satisfy sequencing and separation
requirements, as well as, minimize delay. The authors decide to
use this software as the game environment and simulator for
performance evaluation of our proposed framework and
algorithms.

In this paper, a hierarchical deep reinforcement learning
framework is proposed to enable autonomous air traffic
sequencing and separation, where the input of this agent is the
air traffic controller’s screen. Through the computer vision
techniques, the agent will “see” the screen, comprehend the
air traffic situation, and perform online sequential decision
making to select actions including speed and route option for
each aircraft in real time with ground-based computation.
Unlike Erzberger’s approach, in our paper the reinforcement
learning agent integrates conflict detection and conflict
resolution together via a deep reinforcement learning
approach. Like Erzberger, we also assume that the computed
speed and route advisories will be sent from ground to aircraft
via data link. The series of actions will guide the aircraft
quickly through “Sector 33” and maintain required safe
separation. Our proposed framework and algorithms provide

ICRAT 2018

another promising potential solution to enable autonomous air
traffic control system.

B. Related Work
There have been many important contributions to the topic

of autonomous air traffic control. One of the most promising
and well-known lines of work is the Autoresolver designed and
developed by Heinz Erzberger and his NASA colleagues [1, 2,
3]. It employs an iterative approach, sequentially computing
and evaluating candidate trajectories, until a trajectory is found
that satisfies all of the resolution conditions. The candidate
trajectory is then output by the algorithm as the conflict
resolution trajectory. The Autoresolver is a physics based
approach that involves separate components of conflict
detection and conflict resolution. It has been tested in various
large-scale simulation scenarios. In addition, the Autoresolver
is being verified and validated by NASA researchers using
formal methods.

Reinforcement learning and deep Q-networks have been
demonstrated to play games such as Go, Atari and Warcraft
[13, 14, 15]. The results from these papers show that a well-
designed, sophisticated AI agent is capable of performing high-
level tasks, as well as, learning complex strategies. Therefore,
we are encouraged to apply the reinforcement learning
framework to solve an air traffic control game and set up an
environment for the AI agent to learn the fundamental air
traffic control tasks, i.e., aircraft sequencing and separation.

In this paper, the reinforcement learning framework and a
novel hierarchical deep agent algorithm are developed to solve
the sequencing and separation problem with delay
minimization for autonomous air traffic control. The results
show that the algorithm has very promising performance.

The structure of this paper is as follows: in Section II, the
background of reinforcement learning and deep Q-network will
be introduced. In Section III, the description of the problem
and its mathematical formulation of reinforcement learning are
presented. Section IV presents our designed hierarchical deep
agent algorithm to solve this problem. The numerical
experiment and results are shown in Section V. And Section VI
concludes this paper.

II. BACKGROUND

A. Reinforcement Learning
Reinforcement learning is one type of sequential decision

making where the goal is to learn how to act optimally in a
given environment with unknown dynamics. A reinforcement
learning problem involves an environment, an agent, and
different actions the agent can take in this environment. The
agent is unique to the environment and we assume the agent is
only interacting with one environment. Let t represent the
current time, then the components that make up a
reinforcement learning problem are as follows:

• S - The state space S is a set of all possible states in the
environment

• A - The action space A is a set of all actions the agent
can take in the environment

• r(st, at, st+1) - The reward function determines how
much reward the agent is able to acquire for a given (st,
at, st+1) transition

• γ Î [0, 1] - A discount factor determines how far in the
future to look for rewards. As γ ® 0, only immediate
rewards are considered, whereas, when γ ® 1, future
rewards are getting prioritized.

S contains all information about the environment and each
element st+1 can be considered a snapshot of the environment at
time t. The agent accepts st and with this, the agent then
decides an action, at. By taking action at, the state is now
updated to st+1 and there is an associated reward from making
the transition from st ® st+1. How the state evolves from st ®
st+1 given action at is dependent upon the dynamics of the
system, which is unknown. The reward function is user
defined, but needs to be carefully designed to reflect the goal
of the agent. Fig. 1 shows the progression of a reinforcement
learning problem.

Figure 1. Progression of a reinforcement learning problem within an

environment.

From this framework, the agent is able to learn the optimal
decisions in each state of the environment by maximizing a
cumulative reward function. We call the sequential actions the
agent makes in the environment a policy. Let π represent some
policy and T represent the total time for a given environment,
then the optimal policy can be defined as:

π * = argmaxπ E[(r(
t=0

T

∑ st ,at , st+1) |π)]. (1)

If we define the reward for actions we deem “optimal” very
high, then by maximizing the total reward, we have found the
optimal solution to the problem.

B. Q-Learning
One of the most fundamental reinforcement learning

algorithms is known as Q-learning. This popular learning
algorithm was introduced by Watkins and the goal is to
maximize a cumulative reward by selecting an appropriate
action in each state [16]. The idea of Q-learning is to estimate a
value Q for each state and action pair (s, a) in an environment
that directly reflects the future reward associated with taking
such an action in this state. By doing this, we can extract the

ICRAT 2018

policy that reflects the optimal actions for an agent to take. The
policy can be thought of as a mapping or a look-up table,
where at each state, the policy tells the agent which action is
the best one to take. During each learning iteration, the Q-
values are updated as follows:

Q(st ,at)←Q(st ,at)+
α (r + γ maxat+1Q(st+1,at+1)−Q(st ,at)). (2)

In (2), α represents the learning rate, r represents the
reward for a given state and action, and γ represents the
discount factor. One can see that in the max Q(st+1, at+1) term,
the idea is to determine the best possible future reward by
taking this action.

C. Deep Q-Network (DQN)
While Q-learning performs well in environments where the

state-space is small, as the state-space begins to increase, Q-
learning becomes intractable. It is because there is now a need
for more experience (more game episodes to be played) in the
environment to allow convergence of the Q-values. To obtain
Q-value estimates in environments where the state-space is
large, the agent must now generalize from limited experience
to states that may have not been visited [17]. One of the most
widely used function approximation techniques for Q-learning
is deep Q-networks (DQN), which involves using a neural
network to approximate the Q-values for all the states. With
standard Q-learning, the Q-value was a function of Q(s, a), but
with DQN the Q-value is now a function of Q(s, a, θ), where θ
is the parameters of the neural network. Given an n-
dimensional state-space with an m-dimensional action space,
the neural network creates a map from Ân ® Âm. As
mentioned by Van Hasselt et al., incorporating a target network
and experience replay are the two main ingredients for DQN
[18]. The target network with parameters θ-, is equivalent to
the online network, but the weights (θ-) are updated every τ
time steps. The target used by DQN can then be written as:

Yt
DQN = rt+1 + γ maxat+1Q(st+1,at+1;θt

−). (3)

The idea of experience replay is that for a certain amount of
time, observed transitions are stored and then sampled
uniformly to update the network. By incorporating the target
network, as well as, experience replay, this can drastically
improve the performance of the algorithm [18].

D. Double Deep Q-Network (DDQN)
In Q-learning and DQN there is the use of a max operator

to select which action results in the largest potential future
reward. Van Hasselt et al. showed that due to this max
operation, the network is more likely to overestimate the
values, resulting in overoptimistic Q-value estimations [19].
The idea introduced by Hasselt was to decouple the max
operation to prevent this overestimation to create what is called

double deep Q-network (DDQN) [20]. To decouple the max
operator, a second value function must be introduced,
including a second network with weights θ¢. During each
training iteration, one set of weights determines the greedy
policy and the other then determine the Q-value associated.
Formulating (3) as a DDQN problem:

Yt
DDQN = rt+1 + γQ(st+1,argmaxat+1Q(st+1,at+1;θt);θt

'). (4)

In (4), it can be seen that the max operator has been
removed and we are now including an argmax function to
determine the best action due to the online weights. We then
use that action, along with the second set of weights to
determine the estimated Q-value.

III. PROBLEM FORMULATION

A. Problem Statement
In real world practice, the air traffic controllers in en route

and terminal sectors are responsible for sequencing and
separating aircraft. In our research, we used the NASA Sector
33 web-based application (a video game) as our air traffic
control simulator. The application has a set of problems whose
solutions are difficult to find. To evaluate the performance of
our hierarchical deep agent algorithm, we selected three
different game scenarios with various difficulty levels and
constraints.

1) Objective: The objective in the NASA Sector 33 game
environment is to maintain a safe separation between aircraft,
resolve conflict, and minimize delay by making appropriate
route changes and providing speed advisories. Ultimately, we
want to guide each aircraft quickly through the metering fix.
Unlike the real-world air traffic control scenario, in this game
environment there is also a unique “final metered position”
right after the metering fix for each aircraft. It is not too
difficult for a good human player to obtain a feasible solution
in the game, where the aircraft are close to their final metered
position, safe separation is maintained, and conflicts are
resolved. In order to obtain the optimal solution in this
environment, the aircraft have to maintain safe separation,
resolve conflict, and arrive at their final metered position with
no delay. However, obtaining the optimal solution in this
environment is much more difficult than obtaining the feasible
solution, due to the fact that each aircraft has to follow the
optimal speed and route at every time-step. If one speed
change is made incorrectly, then the optimal solution will not
be achieved.

2) Constraints: There are many constraints in the NASA
Sector 33 game environment to help resemble a real-world air
traffic environment. For each problem, there is a fixed number
of aircraft. For some problems, there is only two aircraft,

ICRAT 2018

some there is three aircraft, and this number increased to a
maximum of five aircraft. The next constraint imposed a limit
on the number of route changes for a given aircraft. For
example, one problem might allow for a single aircraft to
change routes, while another problem would allow both
aircraft to change routes, thus increasing the complexity.
Weather also imposed an additional limit on the number of
aircraft route changes. In some of the problems, there is a
storm blocking one of the routes, so now there is no option to
select the corresponding route anymore. One of the strictest
constraints in the game is time. In each problem, there is a
timer for how long the episode lasts and there is only enough
time for the optimal solution to be obtained. This meant that to
obtain the optimal solution, the aircraft has to be at their final
metered position when the timer is at 0:00, otherwise it is not
an optimal solution. The last constraint in the game is the
individual speed of each aircraft. Each aircraft has the ability
to fly at six different speeds ranging from 300 knots to 600
knots.

B. Reinforcement Learning Formulation
Here we formulate the NASA Sector 33 environment as a

reinforcement learning problem and define the state-space,
action-space, and reward functions for the parent agent, as well
as, the child agent.

1) State Space: A state contains all the information the AI
agent needs to make decisions. The state information was
composed of different information for the parent agent and
child agent. For the parent agent, the information included in
the state was a screen-shot of the game screen. For the child
agent, if we let i represent a given aircraft, then the
information included in the state was: aircraft positions (xi, yi),
aircraft speeds vi, and route information. Route information
included the combination of routes for both aircraft, defined as
Cj, where j represents a given route combination. From this,
we can see that the state-space for the parent agent is constant,
since it only depends on the number of pixels in the screen-
shot. Suppose there are m ´ m pixels in the screen-shot and n
number of aircraft, then the state-space can be represented
with m ´ m numbers for the parent agent and 2 ´ n + n + 1 for
the child agent. Fig. 2 shows an example of a state in the
NASA Sector 33 game environment.

If we consider Fig. 2 as an example, we can acquire all of
the state information we need from the game-screen. For the
parent agent, the state will be represented as follows:

SP = (p1, p2, p3,..., pm × m),
where pk represents the intensity tuple of pixel k. For each
pixel in the game screen, there is an associated pixel intensity
tuple (red, green, blue) that contains the intensity for each color

ranging from [0, 255]. For example, the color green is
represented as (0, 255, 0), the color blue is represented as (0, 0,
255) and the color red is represented as (255, 0, 0). For the
child agent, the state is defined as:

SC = (x1, y1, x2, y2,v1,v2,Cj),
where the subscript represents a specific aircraft and j is the
combination of route that the aircraft will take.

Figure 2. Example of a state in the NASA Sector 33 game environment.

2) Action Space: At each time-step, the parent agent and
child agent can make a decision to change the route of the
aircraft and change the speeds of the aircraft, respectively. The
only difference is the decision time-step for the parent agent
and child agent. The parent agent takes one action every
episode, where an episode is defined as an entire play through
the game. The child agent takes one action every four seconds
within the episode to provide more control over the aircraft
once the route combination is determined. The action-space
for the parent agent can be defined as follows:

AP = (C1, ... ,Cj) ∀ j,

where j is the number of route combinations for the aircraft. If
we consider the example in Fig. 2, the action-space for the
parent agent will be:

AC = (C1,C2,C3,C4).
This is because each aircraft can take two unique routes,
which equates to four unique route combinations.

For the child agent, the action-space is defined as:

AC = (U1, ... ,Uk) ∀ k,
where we define U as all of the possible combinations of
speeds for the aircraft and k as a unique speed combination.

3) Terminal State: Termination in the episode could be
achieved in three different ways:

ICRAT 2018

• Goal reached (optimal) - All aircraft made it to their
final metered position, maintained safe separation, and
avoided collision. This meant that:

| gxi − xi | = 0, ∀ i
• Out of time (feasible) - The aircraft did not arrive at

their final metered position, but might have given more
time.

| gxi − xi | > 0, ∀ i
• Collision - The aircraft collided with one another.

(yj − yi)
2 + (x j − xi)

2 < δ ,∀ i ≠ j

where δ is in terms of the pixel distance, and gx is defined
as the set of goal positions for each aircraft.

By observing the current state, we were able to see if any of
the terminal states were obtained. For example, let the current
state be defined as (x1, y1, x2, y2, v1, v2, Cj), then if

| gx1 − x1 | + | gx2 − x2 | = 0,
we have obtained the optimal solution to the problem.

4) Reward Function: The reward function for the parent
agent and child agent needed to be designed to reflect the goal
of this paper: safe separation, minimizing delay of arriving at
final metered position, and choosing the optimal route
combination. We were able to capture our goals in the
following reward functions for the parent agent and child
agent:

Parent agent

rP =
1

| gxi − xi |
i=1

N

∑

Child agent

rC = 0.001 vi − 0.6,
i=1

N

∑

where N is the number of aircraft. In the reward for the child
agent, we included two constants (0.001 and -0.6). The reason
for adding the factor of 0.001 is to scale the rewards between [-
1, 1]. The addition of 0.6 is to penalize slower aircraft speeds
and to reward faster aircraft speeds. These rewards were
obtained at each time-step for the parent and child agent. If a
terminal state was reached, then there was an additional reward
that was added for each scenario: -10 for collision, -3 for out of
time, and +10 for optimal solution. With these reward
functions, the AI agent will prioritize choosing the route
combination that allows the aircraft to arrive as quickly as

possible, as well as, choosing the fastest speed for the aircraft
without creating any conflict.

IV. SOLUTION APPROACH
To solve the NASA Sector 33 environment, we designed

and developed a novel reinforcement learning algorithm called
the hierarchical deep agent. In this section, we introduce and
describe the algorithm, then we explain why this algorithm is
needed to solve this game.

A. Hierarchical Deep Agent
To formulate this environment as a reinforcement

learning problem, we found that we were unable to formulate
this environment as a typical single agent environment due to
the non-Markovian property that this problem involves. The
route change for an aircraft can only happen during a small
window of time, therefore, if formulated as a single agent
problem, the action of changing routes would not be chosen
nearly as often leading to a very slow convergence time.

To solve this problem, we used a parent agent who has a
second agent nested within. The parent agent will take an
action (changing route) and then the child agent will control
the actions of changing speeds. One of the important
differences between the parent and child agents is the state-
space. The state-space for the parent agent can be represented
as screen pixels or in terms of the aircraft positions and
speeds. The child agent has the same state as the parent agent
if we use the aircraft positions and speeds, but we also add
another dimension to the child agent state. This new
dimension we add is the action of the parent agent.

We do this to decouple the action sets of changing route
and changing speed. Then we can have the parent agent take
one action in the beginning of the episode, followed by the
child agent adding this action to its state and proceeding with
the actions of changing speed. Fig. 3 provides a diagram of
the progression of information from the parent agent to the
child agent. We can see the initial state sP is input into the
parent agent, then the parent agent takes action a. From
there, action a is now included into the child agent state, sC.
From there, the child agent is able to make all successive
decisions with this information. Algorithm 1 provides a
pseudocode for formulating a hierarchical deep reinforcement
learning problem.

Figure 3. Progression from Parent agent to Child agent.

ICRAT 2018

Algorithm 1 Hierarchical Deep Agent
Initialize: Parent Agent
Initialize: Child Agent
Initialize: sP

 reward = 0
 number of episodes = n
for i = 1 to n do

aP = ChooseAction(ParentAgent)
sC = [sP , aC]
repeat

ac = ChooseAction(ChildAgent)
s¢, rC = SimulateEnvironment
receive parent agent reward = rP (s¢)
reward = reward + r
update(ChildAgent)

until Terminal
update(ParentAgent)

 end for

B. Overall Approach
In our formulation of the hierarchical deep agent, we

decided to use the game screen (raw pixels) as input for the
parent agent. By using the game screen, the parent agent can
“see” and “comprehend” the air traffic situation by abstracting
the important features through the hidden layers of double deep
Q-network (DDQN), such as relative aircraft positions without
explicitly providing the information. Then the parent agent is
able to make route selections for all aircraft at the output layer.
In this way, the parent agent DDQN integrates the conflict
detection task (“seeing” and “comprehension”) and first part of
conflict resolution task of route selection (“decision making”).
Fig. 4 shows an illustrative example of the parent agent
architecture. In Fig. 4, the “hidden layer” is a simplified
illustration to represent the entire DDQN. In this specific game
scenario shown in Fig. 4, we have two aircraft to control. The
upper one has two route options, and the lower one has only
one route option. Therefore, the total route combinations for
these two aircraft is two.

Figure 4. Illustrative example of the decision-making process for the parent
agent.

With the route combination selected by the parent agent,
the child agent will include this information to its current state

and proceed with learning how to compute the speed
adjustment advisories. Fig. 5 illustrates a specific example for
the child agent. Here we define the hidden layer as the entire
DDQN representation introduced, and the output as the speed
controls the child agent can implement. In our case study, the
output layer is the speed combinations of the aircraft.

Figure 5. Illustrative example of the decision-making process for the child
agent.

V. NUMERICAL EXPERIMENTS

A. Interface

To test the performance of our proposed algorithm, an
interface was built between the web-based NASA Sector 33
application and our code so that the AI agent can operate all
functions in the game. The state-space information for the
agent was obtained using computer vision techniques. By
capturing screen-shots of the game screen every four seconds,
we could then extract the aircraft position in terms of the (xi,
yi) pixel location. By game design, when restarting a particular
problem, all objectives were the same: final aircraft metered
positions, aircraft initial position, and available speed changes
did not change. We also included an additional feature that is
not available by default in the web-based version of NASA
Sector 33. This feature is to terminate the game if two aircraft
are within in a 30-pixel radius (aircraft collision).

B. Environment Setting
For each problem in NASA Sector 33, we discretized the

environment into episodes, where each run through the
game counted as one episode. We also introduced a time-
step, ∆t, so that after the child agent selected an action, the
environment would evolve for ∆t seconds until a new
decision was made. This was to allow for a noticeable
change in state from st ® st+1, as well as, allow the game to
be played at different speeds. There were many different
parameters that had to be tuned and selected to achieve the
optimal solution in this game. We implemented the DDQN
concept that was mentioned earlier, with a hidden layer of

ICRAT 2018

64 nodes. We used an e-greedy search strategy for both the
parent and child agents. For the child agent, e started at 1.0
and exponentially decayed until 0.01. For the parent agent,
e also started at 1.0 and exponentially decayed to 0.15. The
reason for the parent agent’s e decaying until 0.15 was to
allow for the slightly larger probability of exploring the other
routes even when many episodes had already been run. In
harder game environments, we could obtain a near optimal
feasible solution on the non-optimal route. By forcing the
lower bound on e, this ensured that we were able to converge
to the optimal route. We used a tanh activation function for
the child agent and the ReLU activation function for the
parent agent. This was because for the parent agent, instead of
using a multi-layer perceptron network, we used a
convolutional neural network whose input was the current
game screen. Our memory length for both the parent and the
child agents was set to 500,000 to allow for a large number of
the previous transitions to be made available for training.

C. Case Study: two aircraft with four routes
In this problem, we considered two aircraft where both

aircraft have the ability to change routes. Fig. 6 shows the
game screen for this problem. With both aircraft able to change
routes, this leads to four different route combinations and
greatly increases the complexity of the problem. What also
makes this problem interesting is that even if the aircraft take
the incorrect route, a near-optimal feasible solution can be
obtained which makes choosing the route more difficult.

Figure 6. In the case study, both aircraft in this problem have the ability to
change routes.

By training the AI agent on around 7000 episodes and
choosing a time-step of four seconds, we were able to obtain
the optimal solution for this problem. The number of episodes
required to achieve the optimal solution was due to the
complexity of the problem and the fact that different routes
could achieve very similar results. It is also important to note
that in this problem, if we chose a different route, the AI agent
would achieve the optimal solution specific for that route.

Therefore, in a real-world scenario, if there was a last-minute
decision to change from the optimal route to a feasible route,
the AI agent would be able to maintain safe separation and
minimize delay on this new route. Fig. 7 shows the game
screen after obtaining the optimal solution to this problem.

D. Algorithm Performance
In this section, we analyze the algorithm’s performance on

the two-aircraft problem. Fig. 8 shows the score per episode
during training for the case study.

We can see that throughout training the score tends to
oscillate frequently, but is on an increasing trend. This is due to
the value of e being close to 1 and as this value decreases
through the episodes, the score increases significantly. We
define the score in Fig. 8 to be the cumulative reward at the end
of each episode. The score involves the reward of the child
agent at each time step, as well as, the termination rewards: -10
for collision, -3 for out of time, and +10 for optimal solution.

Figure 7. Problem 2-3 of the NASA Sector 33 game environment after
obtaining the optimal solution. We can see that both aircraft are on their
correct terminal when there is 0:00 left on the timer.

Figure 8. Agent’s score throughout the training process for the case study. We
can see that as the episode number increases, the score increases as well.

ICRAT 2018

VI. CONCLUSION
A novel hierarchical deep reinforcement learning algorithm

is proposed in this paper to sequence and separate aircraft as a
core component in an autonomous air traffic control system.
The problem is formulated in a reinforcement learning
framework with the actions of changing aircraft route and
adjusting aircraft speed. The problem is then solved by using
the hierarchical deep agent algorithm. Numerical experiments
show that this proposed algorithm has promising performance
to help aircraft maintain safe separation, resolve conflict, and
arrive at their final metered positions in a case study. The
proposed algorithm provides a potential solution framework to
enable autonomous sequencing and separation for a fully
automated air traffic control system in a structured airspace.

According to our knowledge, the major contribution of this
research is that we are the first research group to investigate the
feasibility and performance of autonomous aircraft sequencing
and separation with deep reinforcement learning framework to
enable an automated, safe and efficient airspace. In addition,
we propose the novel hierarchical deep reinforcement learning
architecture, which is demonstrated capable of solving
complex online sequential decision-making problems. The
promising results from our numerical experiments encourage
us to conduct future work on more advanced air traffic control
simulators that can model operational uncertainties.

ACKNOWLEDGMENT
The authors would like to thank Heinz Erzberger for the

discussions on autonomous air traffic control and Michelle
Eshow for pointing us to the NASA Sector 33 simulation
environment.

REFERENCES
[1] Erzberger, H., 2005. “Automated conflict resolution for air traffic

control.”
[2] Erzberger, H., 2007. “Fast-time simulation evaluation of a conflict

resolution algorithm under high air traffic demand.”
[3] Erzberger, H., Heere, K., 2010. “Algorithm and operational concept for

resolving short-range conflicts.” Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering 224
(2), 225–243.

[4] Amazon, A. P., 2015. “Revising the airspace model for the safe
integration of small unmanned aircraft systems.” Amazon Prime Air.

[5] Google, 2015. “Google uas airspace system overview.” URL
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pa
ger[1].pdf

[6] Kopardekar, P. H., 2015. “Safely enabling civilian unmanned aerial
system (uas) operations in low-altitude airspace by unmanned aerial
system traffic management (utm).”

[7] Airbus, 2016. “Future of urban mobility.” URL
http://www.airbus.com/newsroom/news/en/2016/12/My-Kind-Of-
Flyover.html

[8] Gipson, L., 2017. “Nasa embraces urban air mobility, calls for market
study.” URL https://www.nasa.gov/aero/nasa-embraces-urban-air-
mobility

[9] Holden, J., Goel, N., 2016. “Fast-forwarding to a future of on-demand
urban air transportation.” San Francisco, CA.

[10] Uber, 2018. “Uber elevate – the future of urban air transport.” URL
https://www.uber.com/info/elevate

[11] OpenAI, 2017. Alphago at the future of go summit, 23-27 may 2017.
URL https://deepmind.com/research/alphago/alphago-china/

[12] NASA, 2013. “NASA sector 33 application.” URL
https://www.atcsim.nasa.gov/simulator/sim2/sector33.html

[13] Amato, C., Shani, G., 2010. “High-level reinforcement learning in
strategy games.” In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1.
International Foundation for Autonomous Agents and Multiagent
Systems, pp. 75–82.

[14] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M., 2013. “Playing atari with deep
reinforcement learning.” arXiv preprint arXiv:1312.5602.

[15] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., et al., 2016. “Mastering the game of go with deep neural
networks and tree search.” nature 529 (7587), 484–489.

[16] Watkins, C. J. C. H., 1989. “Learning from delayed rewards. Ph.D.
thesis, King’s College, Cambridge.”

[17] Kochenderfer, M. J., Amato, C., Chowdhary, G., How, J. P., Reynolds,
H. J. D., Thornton, J. R., Torres-Carrasquillo, P. A., U¨ re, N. K., Vian,
J., 2015. “Decision Making Under Uncertainty: Theory and Application,
1st Edition.” The MIT Press.

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al., 2015. “Human-level control through deep
reinforcement learning.” Nature 518 (7540), 529.

[19] Van Hasselt, H., Guez, A., Silver, D., 2016. “Deep reinforcement
learning with double q-learning.” In: AAAI. Vol. 16. pp. 2094–2100.

[20] Hasselt, H. V., 2010. “Double q-learning.” In: Advances in Neural
Information Processing Systems. pp. 2613–2621.

