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Abstract— Traffic Management Initiatives (TMIs), including
Ground Delay Programs (GDP) and Collaborative Trajectory
Options Programs (CTOP), are tools that air traffic managers
use to balance demand and capacity in congested airports
and airspace regions. In the current Collaborative Decision
Making (CDM) paradigm, the Federal Aviation Administration
(FAA) will set the Planned Acceptance Rates (PARs) for the
constrained airspace resources, then run resource allocation
algorithms to assign ground delays and/or reroutes to affected
flights. In this paper, we have addressed a fundamental question
in TMI PAR planning: do there exist optimal PARs which only
depend on the physical airport or airspace capacity but not the
demand? We show that this conjecture holds true in the de-
terministic capacity case but not in the general stochastic case.
Several critical implications of this conclusion are discussed.
We propose a new stochastic model and develop a heuristic
saturation technique. We demonstrate that this technique can
not only reveal the properties and limiting behaviors of GDP
models but also could potentially be used as a robust PAR
policy when facing demand uncertainty. We then show this
ancillary saturation technique in GDP planning becomes an
indispensable tool in CTOP optimization. The findings of this
paper provide valuable insights in understanding the TMI
rate-planning problem and a more robust algorithm for GDP
optimization.

Keywords— GDP; CTOP; Stochastic Model; Demand Uncer-
tainty; Rate Planning

NOMENCLATURE

Notation Used in SSM and Queueing Version of SSM
Pt Number of flights planned to arrive at the resource

in period t
Gt Number of flights held on the ground in lieu of

arriving in period t
Dt Demand in period t
At,q Number of flights held in the air at the resource from

time interval t to t+ 1, under scenario q
Mt,q Max number of flights that can use the resource in

period t, under scenario q
P̄t Saturated PAR for time interval t
Lt Number of flights accepted to resource in period t
T = {1, 2, · · · , T} Discrete time intervals during which

demand greater than capacity at the resource
T + = {1, 2, · · · , T, T + 1} An extra time period is added

to T to ensure all flights can land
ca Ratio of air and ground delay costs
pq Probability scenario q occurs
Notation Used in ESOM

P r
t Number of flights planned to arrive at resource r in

period t
Lr
t,q Number of flights accepted to resource r in period

t, under scenario q
Ar

t,q Number of flights held in the air at resource r from
time interval t to t+ 1, under scenario q

Gr
t Number of flights whose arrival time at r ∈FCA is

adjusted from time interval t to t+ 1 or later using
ground delay at their point of origin

Mr
t,q Maximum capacity of resource r ∈ PCA, in time

interval t, under scenario q
Dr

t Demand at resource r in time interval t
fr,r

′

t Fraction of flights from resource r directed to
resource r′ in interval t

CONN Set of ordered pairs of resources. (r, r′) ∈ CONN
iff r is connected to r′ in the directed graph

∆r,r′ Number of time periods needed to travel from
resource r to r′. Defined for all pairs (r, r′) ∈
CONN

qij Reroute cost for flight i taking assigned route j
di Assigned ground delay for flight i

I. INTRODUCTION

The goal of Air Traffic Flow Management (ATFM) is to
alleviate projected demand-capacity imbalances at airports
and in en route airspace regions through formulating and
applying strategic Traffic Management Initiatives (TMIs).
There are three classical TMIs: Ground Delay Programs
(GDP), Airspace Flow Programs (AFP), and Reroutes. AFP
can be considered as en route version of GDP, since they
share the same principles and even software tools. The essen-
ce of these TMIs is applying ground delay for flights bound
for congested airspace which would otherwise experience
costly and unsafe air delay, or assigning flights to longer
routes to make them avoid the congested areas. Designed to
be a superset of the classical TMIs, Collaborative Trajectory
Options Programs (CTOP) allow flight operators to submit
a set of desired reroute options (called a Trajectory Options
Set or TOS) to express their conditional preference among
different route choices for each flight, automatically assign
ground delays and/or reroutes around one or more Flow
Constrained Areas (FCAs), and thus better balance demand
with available capacity [1].

Maximizing airspace utilization and preserving equity
among competing airspace users are two objectives of AT-



FM. In the current Collaborative Decision Making (CDM)
paradigm, the Federal Aviation Administration (FAA) will
set the Planned Acceptance Rates (PARs) for the constrained
resources at discrete time intervals and then run resource
allocation algorithms to assign ground delays and/or reroutes
to affected flights. Since there is inherent uncertainty in
weather forecasts, and the demand can also be stochastic,
we need to deal with a sequential Decision Making Under
Uncertainty (DMU) problem. Various DMU frameworks ha-
ve been explored by researchers, including Markov Decision
Process (MDP) [2][3], Chance Constrained Programming
(CCP) [4][5] and Simulation-based Optimization [6][7]. The
dominant approach in TMI optimization has been stochastic
programming. In the stochastic programming framework,
we assume the weather evolution can be modeled using a
scenario tree, which is an input to the model. Most of the
literature is focused on capacity uncertainty and the Single
Airport Ground Holding Problem (SAGHP).

Two pioneering works on applying two-stage and mul-
tistage stochastic programming on SAGHP were done by
Richetta et al. in the early 1990s [8][9]. These two models
were proposed before CDM and assume the control of
individual flights, therefore are not CDM-compatible. The
first stochastic model that conforms to the current operating
procedure was published by Ball et al. [10], referred to as
the Static Stochastic Model (SSM). SSM is a two-stage high
aggregate model that directly computes PARs for a weather-
impacted airport. Kotnyek et al. [11] showed that if the
ground delay cost is marginally increasing, the slot assign-
ments from [8] are consistent with the CDM First-Scheduled-
First-Served (FSFS) principle. The aforementioned models
assume that once a ground-delay decision is made, it will
not be revised, even if the flight is still on the ground.
Mukherjee formulated a flight-level multistage model that
allows a flight to take ground delays multiple times based
on the latest capacity information and the scenario tree
structure [12]. His model gives the theoretical lower bound
for the scenario-based SAGHP. Estes et al. proposed an
aggregate version of Mukherjee’s model and showed that it
is more computationally tractable [13]. Both flight-level and
aggregate versions of Mukherjee’s type of models are not
compatible with current CDM software.

CTOP rate planning is substantially more challenging
than for GDPs due to two reasons: multiple constrained
resources and the fact that demands shift as PARs change.
There are three references in literature on the CTOP rate-
planning problem up to the present: in [14], we present a
highly aggregate CDM-compatible stochastic model, called
Enhanced Stochastic Optimization Model (ESOM), which
is an extension to SSM and could directly produce PARs
for the FCAs in a CTOP program; in [15] and [16], from
mediumly aggregate level to flight level, we formulate nine
muti-commodity stochastic models to benchmark against the
ESOM.

To summarize, the static model of Richetta et al. (under
very mild conditions) and the SSM model of Ball et al.
could give us CDM-compatible PARs for the SAGHP, and

ESOM can generate CDM-compatible PARs for a CTOP. It
is not clear how to extend Richetta’s result to solve a CTOP
problem yet. Given the importance of SSM and ESOM, and
their inheritance relationship, these two models will be the
focus of this paper.

This paper is organized as follows: in section II we discuss
several key conjectures, properties, and new model related
to SSM, and propose the saturation technique (a heuristic
approach). We validate the usefulness of the saturation
technique using a realistic GDP test case. In section III,
we explain why CTOP naturally has a demand uncertainty
problem and how a saturation technique can help alleviate it
in ESOM; in section IV, we summarize the findings of this
paper and point out future work.

II. SATURATION TECHNIQUE, PROPERTIES, AND
QUEUEING VERSION OF SINGLE-RESOURCE STATIC

STOCHASTIC MODEL (SSM)

For ease of reference, SSM is listed below:

min

T∑
t=1

Gt +

T∑
t=1

Q∑
q=1

capqAt,q (1)

s.t. Pt = Dt − (Gt −Gt−1) (2)
Mt,q ≥ Pt − (At,q −At−1,q) (3)
Gt, Pt, At,q ≥ 0 (4)
G0 = GT+1 = A0,q = AT+1,q = 0 (5)

We assume ca > 1 and MT+1,q is sufficiently large for all
scenarios. One important characteristic of SSM (and also
Richetta’s static model) is that the airport PARs (we will
use PARs and PAR vector interchangeably in this paper)
proposed by SSM may be set lower than necessary simply
because there was not sufficient demand to warrant a higher
PAR. As an extreme example, the optimal PAR in a given
time period could be zero, because no flights were requesting
to use the airport. This does not mean that all flights should
be banned from entering during that time period. A natural
question would be: given capacity scenarios, is there a set of
PARs which are optimal with respect to any demand profiles?
In other words, can capacity information alone determine the
optimal PARs? This simple question has deep implications:
if such optimal PARs exist, this will eliminate the need to
consider demand uncertainties caused by arrival time drift,
cancellations, and pop-ups [17][18]. A further deduction is: if
such demand-independent optimal PARs exist, they should be
the optimal solution to the case in which we have sufficiently
high demand, because as demand increases we expect the
optimal PARs to stabilize to a constant value. This motivates
us to flood the resource with artificially large demand to find
the ideal demand-independent optimal PARs. We call this
approach the saturation technique.

We pose three conjectures about SSM:

1) If we increase the demand to the SSM, we will get
the saturated PARs, meaning if we further increase the
demand, the SSM PARs do not change.



2) Saturated PARs are the upper bounds of the optimal
PARs under all demand circumstances.

3) Under any demand case, if we perform ground delay
planning according to saturated PARs, we will get the
optimal objective value.

Remarks:
1) The first conjecture says once traffic demand levels

are sufficiently high, the optimal solution to SSM will
stabilize, and no subsequent increase in demand level
will change the optimal solution (indifference to further
pain), which we refer to as saturated PARs.

2) Given a demand profile, there will be a corresponding
optimal PAR vector computed from SSM. The second
conjecture claims all optimal PARs will be bounded
by saturated PARs (Pt ≤ P̄t). Put it in another way,
the saturated PAR is the greatest number of flights that
should ever be admitted in each time period.

3) Conjecture 3 is a very strong statement and says the
saturated PARs are the demand-independent optimal
PARs.

Conjecture 3 needs further elaboration. To plan according
to saturated PARs, we need the following Queueing Version
of SSM:

min

T∑
t=1

Gt +

T∑
t=1

Q∑
q=1

capqAt,q (6)

s.t. Lt = Dt − (Gt −Gt−1) (7)
ytM ≥ P̄t − Lt ≥ 0 (8)
(1− yt)M ≥ Gt (9)
Mt,q ≥ Lt − (At,q −At−1,q) (10)
Gt, Lt, At,q ≥ 0 (11)
G0 = GT+1 = A0,q = AT+1,q = 0 (12)
yt ∈ {0, 1}, At,q, Gt, Lt ∈ Z+ (13)

where saturated PARs P̄t are used as parameters and upper
bounds for the actual number of accepted flights Lt, M
is a sufficiently large constant, and yt are ancillary binary
variables. Constraints (8) and (9) mean that we will create
|P̄t| slots at time period t irrespective to demand; it doesn’t
matter if some slots turn out to be unused (P̄t > Lt), and if
so it implies Gt = 0.

We will first investigate the three conjectures for the
simple case where the capacity information is deterministic,
i.e. there is only one capacity scenario.

A. Deterministic Capacity Case
For ease of reference, the deterministic version of SSM is

shown below:

min

T∑
t=1

(Gt + caAt) (14)

s.t. Pt = Dt − (Gt −Gt−1) (15)
Mt ≥ Pt − (At −At−1) (16)
Gt, Pt, At ≥ 0 (17)
G0 = GT+1 = A0 = AT+1 = 0 (18)

Conjecture 1: We claim as long as cumulative demand

is not less than cumulative capacity
t∑

i=1

Di ≥
t∑

i=1

Mt, the

deterministic SSM will be saturated. The optimal PARs Pt =
Mt. Note that in the deterministic case we not only provide a
sufficient condition for which we can get saturated PARs, but
we also pinpoint the values of saturated PARs. Proof:

Proof by contradiction. Suppose Pt, Gt, At are the opti-
mal solutions to deterministic SSM. Suppose ∃t′ such that
optimal Pt′ > Mt′ . Then:

At′ ≥ Pt′ −Mt′ +At′−1 ≥ 1

We can modify Pt, Gt, At and get a new solution
P ∗t , G

∗
t , A

∗
t . Let:

P ∗t′ := Pt′ − 1

P ∗t′+1 := Pt′+1 + 1

G∗t′ := Gt′ + 1

A∗t′ := At′ − 1

This new solution is also feasible and has a smaller objective
value:

T∑
t=1

(G∗t + caA
∗
t ) =

T∑
t=1

(Gt + caAt) + (1− ca)

<

T∑
t=1

(Gt + caAt)

which contradicts the assumption that Pt, Gt, At are optimal
solutions. Therefore, independent of demand profile Dt, Pt

should be always smaller than Mt.
It directly follows that At ≡ 0 ∀t ∈ T +, because it

satisfies constraint (16) and it is the smallest possible value
of the second part of the objective function. Therefore the
deterministic SSM can actually be reduced to the following
model:

min

T∑
t=1

Gt

s.t. Pt = Dt − (Gt −Gt−1)

Mt ≥ Pt

Gt, Pt ≥ 0

G0 = GT+1 = 0

(19)

We have proved that Pt ≤ Mt. Now we proceed to prove
the inequality relation is actually equality. If ∃t′ such that
optimal solution Pt′ < Mt′ , then following the cumulative
demand condition we have

Gt =

t∑
i=1

(Dt − Pt) ≥
t∑

i=1

(Mt − Pt) > 1 T ≥ t ≥ t′

Again we can construct a new solution. Let

P ∗t′ := Pt′ + 1

P ∗t := Pt t 6= t′

G∗t := Gt − 1 T ≥ t ≥ t′

G∗t := Gt t′ > t



The new solution P ∗t , G
∗
t has a smaller objective value:

t′−1∑
t=1

Gt +

T∑
t=t′

G∗t =

t′−1∑
t=1

Gt +

T∑
t=t′

Gt − (T − t′ + 1)

<

t′−1∑
t=1

Gt +

T∑
t=t′

Gt

which contradicts the assumption that Pt, Gt are optimal
solutions. Therefore saturated PARs exist and they are Pt =
Mt ∀t ∈ T . It’s easy to know the cumulative demand
condition is also a necessary condition for Pt = Mt:
t∑

i=1

Di =

t∑
i=1

Pi +Gt ≥
t∑

i=1

Mi.

Conjecture 2: Proof: While proving conjecture 1,
we have already shown in the deterministic case, for any
demand profile, the optimal PAR Pt ≤ Mt. Note that the
right-hand side is just the saturated PARs.

Conjecture 3: We need to show the optimal Lt, Gt we
get by solving the queueing version of SSM (6)-(13) (q = 1,
replace P̄t by Mt and set At = 0) are equal to the optimal Pt

and Gt obtained from solving the reduced version of SSM
(19) for any demand profile.

Proof: Since we have more constraints in the queueing
version of SSM than in SSM, we only need to show the
optimal solution from SSM is also feasible for the queueing
version of SSM, through checking whether Pt satisfies the
extra constraint Mt > Pt ⇒ Gt = 0. To show this set
of constraints hold true, we will prove by contradiction.
Suppose ∃t′ such that Mt′ > Pt′ and Gt′ > 0, let t′′

be the first time period after t′ such that Gt = 0. Since
GT+1 = 0, t′′ will always exist. For t′′ we must have
Pt′′ = Dt′′ +Gt′′−1 ≥ 1. Let

P ∗t := Pt t 6= t′, t′′

P ∗t′ := Pt′ + 1

P ∗t′′ := Pt′′ − 1

G∗t := Gt − 1 T ≥ t′′ − 1 ≥ t ≥ t′

G∗t := Gt for other t

we will have a smaller objective value with P ∗ and G∗,
which contradicts the assumption that Pt and Gt are optimal
to (19).

To summarize, if the capacity of a single resource is
known deterministically, all three conjectures hold true and
we should always create the same number of slots as the
known capacity irrespective of demand.

B. Stochastic Capacity Case

Now we will prove the general and practical case, where
the future capacity realizations are represented by a finite set
of scenarios. Different from the deterministic case, here we
can only provide a sufficient condition and prove conjecture
1, which is the existence of saturated PARs.

Conjecture 1: We claim as long as demand Dt >
max

q
Mt,q t ∈ T , stochastic SSM will be saturated and

optimal PARs will stabilize. We denote the corresponding
solution as P̄t. We can define any such demand saturated
demand. We further claim that max

q
Mt,q ≥ P̄t and in

realistic P̄t are unique. We first prove the second statement
by contradiction. If ∃t′ such that P̄t′ > maxqMt′,q , then

At′,q ≥ P̄t′ −Mt′,q +At′−1,q ≥ 1, ∀q

Similar to what we did in section II-A, by letting

P̄ ∗t′ := P̄t′ − 1

P̄ ∗t′+1 := P̄t′+1 + 1

Ḡ∗t′ := Ḡt′ + 1

Ā∗t′,q := Āt′,q − 1

we can construct a new solution which has a smaller objec-
tive value. Thus we reach a contradiction to the assumption
that P̄t are optimal.

It is not difficult to construct an example that has multiple
optimal solutions, e.g. Table I. Therefore in general SSM
may not have a unique solution. In the case of Table I, the
non-uniqueness is caused by the fact that we can reduce
ground delay cost by paying more air delay cost. However,
in practice, we usually can at best estimate pq to the second
decimal. Instead of choosing ca as an integer, we can pick
a number like 2.0001, which has a negligible effect on the
objective function but will exclude the possibility of exchan-
ging ground delay for air delay. We haven’t mathematically
proven that this will guarantee the uniqueness of the optimal
solution, but no counterexample was found through extensive
random generated GDP simulations. We can argue in realistic
the uniqueness of staturation PARs can be achieved.

Time Interval 1 2 3 4 5 (T+1)

Scen 1 Capacity Prob 0.4 33 57 49 53 ∞
Scen 2 Capacity Prob 0.5 23 26 20 25 ∞
Scen 3 Capacity Prob 0.1 8 57 7 47 ∞

Saturated Demand 100 100 100 100 0
Saturated PARs 23 42 4 47 284
Saturated PARs 23 41 5 47 284

TABLE I
AN EXAMPLE WITH NON-UNIQUE OPTIMAL SOLUTIONS (ca = 2).

We continue to prove the first point: once demands sati-
sfy the saturation condition, adding more demand will not
change the optimal PARs P̄t t ∈ T . For any t ∈ T , denote
δDt ≥ 0 ∃t ∈ T as the amount of extra demand for interval
t and denote the new optimal solution to the new demand
Dt+δDt as P̃t, G̃t, Ãt,q . We will show that P̃t is also optimal
to original SSM with demand Dt. If P̄t is the unique optimal
solution, then P̃t = P̄t.

Proof: Since P̃t, G̃t, Ãt,q are optimal, the objective
value of SSM should be no greater than the scenario in which



we accept P̄t flights at each time period.
T∑

t=1

G̃t +

T∑
t=1

Q∑
q=1

capqÃt,q ≤

T∑
t=1

(Ḡt +

t∑
j=1

δDj) +

T∑
t=1

Q∑
q=1

capqĀt,q

Because P̃t ≤ max
q
Mt,q , therefore we must have G̃t ≥

t∑
j=1

δDj . Denote Gt = G̃t−
t∑

j=1

δDj and rewrite constraints

P̃t = Dt + δDt − (G̃t − G̃t−1) as

P̃t = (Dt + δDt)− (Gt +

t∑
j=1

δDj −Gt−1 −
t−1∑
j=1

δDj)

= Dt − (Gt −Gt−1)

that is to say P̃t, Gt, Ãt,q are also optimal with respect to
the original problem with demand Dt.

Conjecture 2 and Conjecture 3: We construct a coun-
terexample in Table II to show conjectures 2 and 3 don’t
hold. In this example, we have four planning time periods
and three capacity scenarios, shown in row 1 and rows 2-4,
respectively. If we run SSM with saturated demand, we can
get saturated PARs in row 6, which turns out to be the unique
optimal solution for this saturated GDP problem. If we feed
SSM the demand shown in row 7, we can get corresponding
optimal PARs (row 8) and optimal value (row 9). The last
row shows the objective value if we run the queueing version
of SSM with saturated PARs.

Time Interval 1 2 3 4 5 (T+1)

Scen 1 Capacity Prob 0.3 12 54 41 40 ∞
Scen 2 Capacity Prob 0.5 4 10 19 60 ∞
Scen 3 Capacity Prob 0.2 17 1 7 33 ∞

Saturated Demand 100 100 100 100 0
Saturated PARs 17 1 35 40 307

Demand 16 61 18 18 0
Optimal PARs 16 1 36 40 20

Optimal Obj Value 185.4
Optimal Obj if Planning
Using Saturated PARs 185.6

TABLE II
COUNTEREXAMPLE FOR SINGLE RESOURCE STATIC STOCHASTIC

MODEL (SSM) WITH ca = 2.

There are three key observations from this table:
• The saturated PARs are different from any capacity

scenario.
• In the third time period, the optimal PAR (36 flights)

is one unit higher than the saturated PAR (35 flights).
Therefore the saturated PAR is not an upper bound for
any optimal PARs. Conjecture 2 doesn’t hold.

• If we plan according to saturated PARs, we will get
a worse objective value (185.6) than the value (185.4)
that we get by planning according to the real demand.
Conjecture 3 doesn’t hold.

Conject. 1 Conject. 2 Conject. 3

Deterministic Case True True True
Stochastic Case True False False

TABLE III
RESULTS OF SINGLE AIRPORT GDP PLANNING PROBLEM

In summary, for the stochastic capacity case, in practice
we could compute a unique saturated PAR vector. However,
this saturated PAR vector is neither the upper bounds of all
possible optimal PARs nor it is the ideal demand-independent
optimal PARs.

There is an important implication of the above conclusion:
Even in single-resource planning like GDP, the optimal
PAR vector is in general dependent on demand information.
If we believe the weather will evolve as a scenario tree,
then any rate calculation technique based solely on capacity
information, for example a certain quantile/reduction factor
from weather translation model or a certain way to combine
the scenarios, or based on capacity and inaccurate demand
estimation, generally will not be optimal for the actual
demand profile.

C. Saturated PARs as an Approximation

Although the saturated PARs are not ideal, they still
could be a good robust rate policy with respect to demand
uncertainty. In Table II, even though the saturated PARs are
not optimal with respect to the real demand, the optimal
value we get by running queueing SSM with saturated PARs
is very close to the optimal value we get from running SSM
with actual demand (0.1% optimality gap). We will examine
the practicability of saturated PARs using a realistic GDP
test case at San Francisco International Airport (SFO).

1) Experiment Setup: A well-known problem with SFO
is that the low-altitude cloud layer that develops overnight
precludes simultaneous arrival operations on closely spaced
parallel runways, reducing the arrival capacity from 60 to
30 flights per hour. A time line of discrete probability
distribution of marine stratus layer burnoff time is shown
in Table IV. We select a representative GDP day at SFO and
get the data from the FAA Aviation System Performance
Metrics (ASPM) database [19]. The GDP planning horizon
is from 0900 PST to 1600 PST.

2) Models Comparison: The number of scheduled flights,
PARs calculated using SSM and saturated PARs are drawn
in Figure 1. Both PARs give us the same optimal objective
value 52.48.

We assume during the GDP active period the demand
could be perturbed by maximum +/- 4 flights at each hour.
In this case we are also facing demand uncertainty. Figure 2
shows the cost distributions of 400 sampled scenarios if
we implement two candidate PARs respectively. It is clear
that saturated PARs perform much better than SSM PARs
in terms of total delay costs. In fact the former dominates
the latter in every scenario! This example shows saturated
PARs are more robust than SSM PARs in the face of both



Fog Clearance Time 0700 0800 0900 1000 1100 1200 1300 1400 1500

Probability 0.03 0.05 0.11 0.22 0.25 0.20 0.12 0.01 0.01

TABLE IV
DISTRIBUTION OF MARINE STRATUS LAYER BURNS OFF TIME (PST)
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Fig. 1. Scheduled Flights to SFO and Two Candidate PARs
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Fig. 2. System Delay Costs Under Demand Uncertainties

scenario tree based capacity uncertainty and unstructured
demand uncertainty.

III. SATURATION TECHNIQUE IN CTOP, PROPERTIES OF
ENHANCED STOCHASTIC MODEL (ESOM)

In previous sections, we discussed the properties and
application of the saturation technique for the single-resource
rate-planning problem, of which a GDP is an example. In this
section we will see the saturation technique is more needed
in multi-resource rate-planning problems like CTOP.

In CTOP, the introduction of TOS brings extra difficulties:
firstly, one flight now may have more than one route option,
therefore it is not straightforward to estimate the demand

to the FCAs; secondly, for a given demand estimation,
if we do the planning accordingly, after we run the the
CTOP allocation algorithm, which is a multi-resource RBS
algorithm [20], the demand may shift and invalidate the
proposed PARs. We call this problem TOS-induced demand
variability. To address it, we proposed an iterative algorithm
in [14], shown in Figure 4. There is a key component in this
computation loop called ESOM, which takes demand and
stochastic capacity information as input and outputs PARs
for FCAs that minimize total system ground and air delays.
In order for readers to have a basic knowledge of the model,
here are the three most important features of ESOM:
• The model is an extension of the single-resource SSM,

which means it is also a two-stage static stochastic
model and the computation of PAR is also dependent
on the demand estimation.

• The model differentiates FCAs, which serve like a valve
to control the traffic flows, and Potentially Constrained
Areas (PCAs), which are the actual troubled areas and
whose future capacity realizations are represented by a
finite set of scenarios (Figure 3).

• The model accounts for the travel time between FCAs
and PCAs and uses the flow ratios to model the traffic
flow split from one element to downstream elements.

The reader can refer to [14] for a detailed derivation of the
model.

min
∑

r∈FCA

T∑
t=1

Gr
t +

∑
r∈PCA

T∑
t=1

Q∑
s=1

capsA
r
t,s

s.t. P r
t = UpFCAr

t +Dr
t − (Gr

t −Gr
t−1) ∀r ∈ FCA,∀t

Lr
t,s = UpStreamr

t,s − (Ar
t,s −Ar

t−1,s) ∀r ∈ PCA, s, t

Mr
t,s ≥ Lr

t,s ∀r ∈ PCA,∀s,∀t∑
(r,r′)∈CONN

frt = 1

Gr
t , P

r
t , L

r
t,s, A

r
t,s ≥ 0 ∀r, ∀s,∀t

UpFCAr
t =

∑
r′,r∈CONN

fr
′,r

t−∆r′,r · P r′

t−∆r′,r

UpPCAr
t,s =

∑
r′,r∈CONN

fr
′,r

t−∆r′,r · Lr′

t−∆r′,r,s

UpStreamr
t,s = UpFCAr

t + UpPCAr
t,s

(20)

For the iterative algorithm, in the first iteration we will
use flights’ most preferred routes as the initial demand
estimation. Based on this demand estimation and capacity
information, we will run the rate optimization model, i.e.
ESOM, and compute the PARs for the FCAs. Then we
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Fig. 4. Rate Computation Loop (RCL)

will run the CTOP resource allocation algorithm, get the
new route and ground delay for each flight, and compute
the new demand on the resources. Now it is clear that we
need to have a computation loop, since the demand shift
necessitates the recalculation of PARs and a new PAR vector
may result in new demand distribution for the FCAs. We
will continue running the computation loop and exit if the
following rerouting and delay costs are minimized:

N∑
i=1

(qij + αdi) + β
∑

r∈PCA

T∑
t=1

Q∑
s=1

psA
r
t,s (21)

where α and β are weighting parameters.
There is one critical issue with the above approach: if very

few or no flights are scheduled to traverse a certain FCA,
then the PARs for this FCA computed from ESOM would
be near or equal to zero. The CTOP allocation algorithm will
consider this FCA being heavily restricted/fully blocked and
will allocate very few/no slots to flights. Then in the next
iteration there will be very few/no flights rerouted to this
FCA even though there may be plenty of airspace capacity
available behind this FCA. The crux of this problem is again
the demand dependency of the stochastic model. Like we did

in GDP, we could use a saturation technique to alleviate this
problem:
• Increase demands to FCAs proportionally to sufficiently

large numbers to get the saturated PARs
• If there is no demand to an FCA, multiplying the

demand values (zeros) by a large constant will not help.
We will use minsM

r
t,s as the PAR, where r is the

neighboring PCA. This is because even in the worse
scenario we are still able to accept minsM

r
t,s number

of flights
As we concluded in the last section, saturated PARs are
not ideal even for the single-resource planning problem. In
CTOP, we also shouldn’t expect the saturated PARs obtained
from each iteration to be the optimal upper bound; rather,
we can only treat it as a good approximated bound. The
key differences between GDP and CTOP are: in GDP, we
have the ability to compute the optimal PARs given nominal
demands. The saturated technique is used to reveal the
properties and limiting behaviors of the model, and could
potentially be used as a robust PAR vector when facing
demand uncertainties; whereas in CTOP, even for nominal
demands (no flight cancellations, pop-ups, etc.), we have to
rely on saturated PARs as a heuristic to get a suboptimal
solution.

IV. CONCLUSIONS

In this paper, we investigated a key conjecture for GDP:
the existence of demand-independent optimal PARs. We
proposed the queueing version of SSM to evaluate the
performance of PAR policies. We showed that a by-product,
discovered while proving the existence conjecture, called
saturation technique turns out to be a valuable tool in
revealing the properties of GDP models and potentially in
designing a robust PAR policy under demand uncertainty.
We also explained why CTOP in nature suffers from demand
uncertainty and saturation technique is a key tool for finding
a good suboptimal solution.

The ongoing work includes further investigating the uni-
queness of saturated PARs to stochastic SSM, testing satura-
ted PARs in other typical GDP use cases, giving theoretical
analysis to the robustness of saturated PARs, and finding
alternative ways to compute CDM-compatible PARs for
CTOP.
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VI. APPENDIX

A. Acronyms

ATFM Air Traffic Flow Management
FAA Federal Aviation Administration
TMI Traffic Management Initiative
CDM Collaborative Decision Making
GDP Ground Delay Program



AFP Airspace Flow Program
FCA Flow Constrained Area
PCA Potential Constrained Area
PAR Planned Acceptance Rate
CTOP Collaborative Trajectory Options Program
TOS Trajectory Options Set
RTC Relative Trajectory Cost
RCL Rate Computation Loop
RBS Ration by Schedule
SSM (Single Resource) Static Stochastic Model
ESOM Enhanced Stochastic Optimization Model
SAGHP Single Airport Ground Holding Problem
DMU Decision Making Under Uncertainty
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