
Autonomous Separation Assurance in An High-Density En Route
Sector: A Deep Multi-Agent Reinforcement Learning Approach

Marc Brittain and Peng Wei

Abstract— Ensuring high-density air transportation systems
of the future are both safe and efficient is a top priority.
With the growing air traffic complexity in traditional and low-
altitude airspace, an autonomous air traffic control system is
needed to ensure safe-separation requirements. We propose
a deep multi-agent reinforcement learning framework that
is able to identify and resolve conflicts between aircraft in
a high-density, stochastic, and dynamic en route sector with
multiple intersections. The proposed framework utilizes an
actor-critic model, A2C that incorporates the loss function
from Proximal Policy Optimization (PPO) to help stabilize the
learning process. In addition, we use a centralized learning,
decentralized execution scheme where one neural network is
learned and shared by all agents in the environment. We
show that our framework is both scalable and efficient for
large number of incoming aircraft to achieve extremely high
traffic throughput. We evaluate our model via simulation in the
BlueSky environment. Results show that our framework is able
to resolve 99.97% of all conflicts both along route and at the
intersections.

I. INTRODUCTION

A. Motivation

With the fast global air traffic growth and expected high
density air traffic in specific airspace regions, to guarantee air
traffic control (ATC) safety and efficiency becomes a critical
challenge. Tactical decisions are still being made by human
air traffic controllers with very little change in en route air
traffic control sectors as compared to 50 years ago [1]. Heinz
Erzberger and his NASA colleagues laid the foundation in
autonomous air traffic control by introducing the Advanced
Airspace Concept (AAC) to increase airspace capacity and
operation safety by designing automation tools such as
Autoresolver and TSAFE to augment human controllers [2,
3, 4] in conflict resolution. Inspired by Erzberger, we believe
that a fully automated ATC system is the ultimate solution
to handle the high-density, complex, and dynamic air traffic
in the future en route and terminal airspace.

In recent proposals for low-altitude airspace operations
such as UAS Traffic Management (UTM) [5], U-space [6],
and urban air mobility [7], there is also a strong demand
for an autonomous air traffic control system to provide
advisories to these intelligent aircraft, facilitate on-board
autonomy or human operator decisions, and cope with high-
density air traffic while maintaining safety and efficiency [7,
8, 9, 10, 11, 12, 13]. According to the most recent study by
Hunter and Wei [14], the key to these low-altitude airspace

M. Brittain is with the Department of Aerospace Engineering, Iowa State
University, Ames, IA, 50021, USA mwb@iastate.edu

P. Wei is with the Department of Aerospace Engineering, Iowa State
University, Ames, IA, 50021, USA pwei@iastate.edu

operations is to design the autonomous ATC on structured
airspace to achieve envisioned high throughput. Therefore,
the critical challenge here is to design an autonomous air
traffic control system to provide real-time advisories to
aircraft to ensure safe separation both along air routes and at
intersections. Furthermore, we need this autonomous ATC
system to be able to manage multiple intersections and
handle uncertainty in a tactical manner.

To implement such a system, we need a model to perceive
the current air traffic situation and provide advisories to
aircraft in an efficient and scalable approach. Reinforcement
learning, a branch of machine learning, is a promising way
to solve this problem. The goal in reinforcement learning is
to allow an agent to learn an optimal policy by interacting
with an environment. The agent first perceives the state in
the environment, selects an action based on the perceived
state, and receives a reward based on this perceived state
and action. By formulating the tasks of human air traffic
controllers as a reinforcement learning problem, we can
obtain dynamic real-time air traffic advisories to aircraft with
little computation overhead.

Artificial intelligence (AI) algorithms are achieving per-
formance beyond humans in many real-world applications
today. An artificial intelligence agent called AlphaGo built
by DeepMind defeated the world champion Ke Jie in three
matches of Go in May 2017 [15]. This notable advance
in the AI field demonstrated the theoretical foundation and
computational capability to potentially augment and facilitate
human tasks with intelligent agents and AI technologies. To
utilize such techniques, fast-time simulators are needed to
allow the agent to efficiently learn in the environment. Until
recently, there were no open-source high-quality air traffic
control simulators that allowed for fast-time simulations to
enable an AI agent to interact with. The air traffic control
simulator, BlueSky, developed by TU Delft allows for real-
istic real-time air traffic scenarios and we decide to use this
software as the environment and simulator for performance
evaluation of our proposed framework [16].

In this paper, a deep multi-agent reinforcement learning
framework is proposed to enable autonomous air traffic
separation in en route airspace, where each aircraft is repre-
sented by an agent. Each agent will comprehend the current
air traffic situation and perform online sequential decision
making to select speed advisories in real-time to avoid
conflicts, both at intersections and along route. Our proposed
framework provides another promising potential solution to
enable an autonomous air traffic control system.



B. Related Work

Deep reinforcement learning has been widely explored
in ground transportation in the form of traffic light control
[17, 18]. In these approaches, the authors deal with a single
intersection and use one agent per intersection to control the
traffic lights. Our problem is similar to ground transportation
in the sense we want to provide speed advisories to aircraft
to avoid conflict, in the same way a traffic light advises cars
to stop and go. The main difference with our problem is
that we need to control the speed of each aircraft to ensure
there is no along route conflict. In our work, we represent
each aircraft as an agent instead of the intersection to handle
along route and intersection conflicts.

There have been many important contributions to the topic
of autonomous air traffic control. One of the most promising
and well-known lines of work is the Autoresolver designed
and developed by Heinz Erzberger and his NASA colleagues
[2, 3, 4]. It employs an iterative approach, sequentially com-
puting and evaluating candidate trajectories, until a trajectory
is found that satisfies all of the resolution conditions. The
candidate trajectory is then output by the algorithm as the
conflict resolution trajectory. The Autoresolver is a physics-
based approach that involves separate components of conflict
detection and conflict resolution. It has been tested in various
large-scale simulation scenarios with promising performance.

Strategies for increasing throughput of aircraft while min-
imizing delay in high-density sectors are currently being
designed and implemented by NASA. These works include
the Traffic Management Advisor (TMA) [19] or Traffic
Based Flow Management (TBFM), a central component
of ATD-1 [20]. In this approach, a centralized planner
determines conflict free time-slots for aircraft to ensure
separation requirements are maintained at the metering fix.
The main difference with our work is that we are dealing
with intersections instead of merging points so that aircraft
maintain the route they are on and do not change at the
intersection. The second difference is that our method is
a decentralized framework that can handle uncertainty. In
TMA or TBFM, once the arrival sequence is determined and
aircraft are within the “freeze horizon” no deviation from
the sequence is allowed, which could be problematic if one
aircraft becomes uncooperative.

Multi-agent approaches have also been applied to conflict
resolution [21]. In this line of work, negotiation techniques
are used to resolve identified conflicts in the sector. In our
research, we do not impose any negotiation techniques, but
leave it to the agents to derive negotiation techniques through
learning and training.

Reinforcement learning and deep Q-networks have been
demonstrated to play games such as Go, Atari and Warcraft,
and most recently Starcraft II [22, 23, 24, 25]. The results
from these papers show that a well-designed, sophisticated
AI agent is capable of learning complex strategies. It was also
shown in previous work that a hierarchical deep reinforce-
ment learning agent was able to avoid conflict and choose
optimal route combinations for a pair of aircraft [26].

Recently the field of multi-agent collision avoidance
has seen much success in using a decentralized non-
communicating framework in ground robots [27, 28]. In this
work, the authors develop an extension to the policy-based
learning algorithm (GA3C) that proves to be efficient in
learning complex interactions between many agents. We find
that the field of collision avoidance can be adapted to conflict
resolution by considering larger separation requirements, so
our framework is inspired by the ideas set forth by [28].

In this paper, the deep multi-agent reinforcement learning
framework is developed to solve the separation problem for
autonomous air traffic control in en route dynamic airspace
where we avoid the computationally expensive forward in-
tegration method by learning a policy that can be quickly
queried. The results show that our framework has very
promising performance.

The structure of this paper is as follows: in Section II, the
background of reinforcement learning, policy based learning,
and multi-agent reinforcement learning will be introduced.
In Section III, the description of the problem and its
mathematical formulation of deep multi-agent reinforcement
learning are presented. Section IV presents our designed deep
multi-agent reinforcement learning framework to solve this
problem. The numerical experiments and results are shown
in Section V, and Section VI concludes this paper.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning is one type of sequential decision
making where the goal is to learn how to act optimally in a
given environment with unknown dynamics. A reinforcement
learning problem involves an environment, an agent, and
different actions the agent can select in this environment.
The agent is unique to the environment and we assume the
agent is only interacting with one environment. If we let t
represent the current time, then the components that make
up a reinforcement learning problem are as follows:
• S - The state space S is a set of all possible states in

the environment
• A - The action space A is a set of all actions the agent

can select in the environment
• r(st, at) - The reward function determines how much

reward the agent is able to acquire for a given (st,
at) transition

• γ ∈ [0,1] - A discount factor determines how far in the
future to look for rewards. As γ → 0, immediate
rewards are emphasized, whereas, when γ → 1,
future rewards are prioritized.

S contains all information about the environment and each
element st can be considered a snapshot of the environment
at time t. The agent accepts st and with this, the agent then
selects an action, at. By selecting action at, the state is
now updated to st+1 and there is an associated reward from
making the transition from (st , at) → st+1. How the state
evolves from st → st+1 given action at is dependent upon
the dynamics of the system, which is often unknown. The



reward function is user defined, but needs to be carefully
designed to reflect the goal of the environment.

From this framework, the agent is able to extract the opti-
mal actions for each state in the environment by maximizing
a cumulative reward function. We call the actions the agent
selects for each state in the environment a policy. Let π
represent some policy and T represent the total time for a
given environment, then the optimal policy can be defined
as follows:

π∗ = arg max
π

E[

T∑
t=0

(r(st, at)|π)]. (1)

If we design the reward to reflect the goal in the environment,
then by maximizing the total reward, we have obtained the
optimal solution to the problem.

B. Policy-Based Learning

In this work, we consider a policy-based reinforcement
learning algorithm to generate policies for each agent to
execute. The advantage of policy-based learning is that these
algorithms are able to learn stochastic policies, whereas
value-based learning can not. This is especially beneficial in
non-communicating multi-agent environments, where there
is uncertainty in other agent’s action. A3C [29], a recent
policy-based algorithm, uses a single neural network to ap-
proximate both the policy (actor) and value (critic) functions
with many threads of an agent running in parallel to allow
for increased exploration of the state-space. The actor and
critic are trained according to the two loss functions:

Lπ = log π(at, |st)(Rt − V (st)) + β ·H(π(st)) (2)

Lv = (Rt − V (st))
2, (3)

where in (2), the first term log π(at, |st)(Rt−V (st)) reduces
the probability of sampling an action that led to a lower
return than was expected by the critic and the second term,
β·H(π(st)) is used to encourage exploration by discouraging
premature convergence to sub-optimal deterministic polices.
Here H is the entropy and the hyperparameter β controls
the strength of the entropy regularization term. In (3), the
critic is trained to approximate the future discounted rewards,
Rt =

∑k−1
i=0 γ

irt+i + γkV (st+k).
One drawback of Lπ is that it can lead to large destructive

policy updates and hinder the final performance of the model.
A recent algorithm called Proximal Policy Optimization
(PPO) solved this problem by introducing a new type of
loss function that limits the change from the previous policy
to the new policy [30]. If we let rt(θ) denote the probability
ratio and θ represent the neural network weights at time t,
rt(θ) = πθ(at|st)

πθold (at|st)
, the PPO loss function can be formulated

as follows:

LCLIP(θ) =

Et[min(rt(θ)(A), clip(rt(θ), 1− ε, 1 + ε)(A))], (4)

where A := Rt − V (st) and ε is a hyperparameter that
determines the bound for rt(θ). This loss function allows

the previous policy to move in the direction of the new
policy, but by limiting this change it is shown to lead to
better performance [30].

C. Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning, instead of con-
sidering one agent’s interaction with the environment, we
are concerned with a set of agents that share the same
environment [31]. Fig. 1 shows the progression of a multi-
agent reinforcement learning problem. Each agent has its
own goals that it is trying to achieve in the environment that
is typically unknown to the other agents. In these types of
problems, the difficulty of learning useful policies greatly
increases since the agents are both interacting with the envi-
ronment and each other. One strategy for solving multi-agent
environments is Independent Q-learning [32], where other
agents are considered to be part of the environment and there
is no communication between agents. This approach often
fails since each agent is operating in the environment and in
return, creates learning instability. This learning instability
is caused by the fact that each agent is changing its own
policy and how the agent changes this policy will influence
the policy of the other agents [33]. Without some type of
communication, it is very difficult for the agents to converge
to a good policy.

Fig. 1. Progression of a multi-agent reinforcement learning problem.

III. PROBLEM FORMULATION

In real world practice, air traffic controllers in en route
and terminal sectors are responsible for separating aircraft.
In our research, we used the BlueSky application as our
air traffic control simulator. We developed a challenging
Case Study with multiple intersections and high-density air
traffic to evaluate the performance of our deep multi-agent
reinforcement learning framework.

1) Objective: The objective in this Case Study is to
maintain safe separation between aircraft and resolve conflict
for all aircraft in the sector by providing speed advisories.
Three routes are constructed with two intersections so that
the agents must navigate through the intersection with no
conflicts. In order to obtain the optimal solution in this
environment, the agents have to maintain safe separation and
resolve conflict and every time step in the environment. The



designed Case Study is a dynamic simulation where aircraft
enter the sector stochastically which provides a more difficult
challenge for the agents since they need to develop a strategy
instead of simply memorizing actions.

2) Simulation Settings: There are many settings we im-
posed to make this Case Study feasible. For each simulation
run, there is a fixed max number of aircraft. This is to allow
comparable performance between simulation runs and to
evaluate the final performance of the model. In BlueSky, the
performance metrics of each aircraft type impose different
constraints on the range of cruise speeds. We set all aircraft
to be the same type, Boeing 747-400, in this Case Study.
We also imposed a setting that all aircraft can not deviate
from their route. The final setting in the Case Study is the
desired speed of each aircraft. Each aircraft has the ability
to select three different desired speeds: minimum allowed
cruise speed, current cruise speed, and maximum allowed
cruise speed which is defined in the BlueSky simulation
environment.

A. Multi-Agent Reinforcement Learning Formulation

Here we formulate our BlueSky Case Study as a deep
multi-agent reinforcement learning problem by representing
each aircraft as an agent and define the state space, action
space, termination criteria and reward function for the agents.

1) State Space: A state contains all the information the
AI agent needs to make decisions. Since this is a multi-
agent environment, we needed to incorporate communication
between the agents. To allow the agents to communicate,
the state for a given agent also contains state information
from the N-closest agents. We follow a similar state space
definition as in [28], but we use half of the loss of separation
distance as the radius of the aircraft. In this way the sum of
radii between two aircraft is equal to the loss of separation
distance. The state information includes distance to the
goal, aircraft speed, aircraft acceleration, distance to the
intersection, a route identifier, and half the loss of separation
distance for the N-closest agents, where the position for a
given aircraft can be represented as (distance to the goal,
route identifier). We also included the distance to the N-
closest agents in the state space of the agents and the full
loss of separation distance. From this, we can see that the
state space for the agents is constant in size, since it only
depends on the N-closest agents and does not scale as the
number of agents in the environment increase. Fig. 2 shows
an example of a state in the BlueSky environment.

We found that defining which N-closest agents to consider
is very important to obtain a good result since we do not want
to add irrelevant information in the state space. For example,
consider Fig. 2. If the ownship is on R1 and one of the closest
aircraft on R3 has already passed the intersection, there is
no reason to include its information in the state space of the
ownship. We defined the following rules for the aircraft that
are allowed to be in the state of the ownship:

• aircraft on conflicting route must have not reached the
intersection

Fig. 2. BlueSky sector designed for our Case Study. There are three routes,
R1, R2, and R3, along with two intersections, I1 and I2.

• aircraft must either be on the same route or on a
conflicting route.

By utilizing these rules, we eliminated useless information
which we found to be critical in obtaining convergence to
this problem.

If we consider Fig. 2 as an example, we can acquire all
of the state information we need from the aircraft. If we let
I(i) represent the distance to the goal, aircraft speed, aircraft
acceleration, distance to the intersection, route identifier, and
half the loss of separation distance of aircraft i, the state will
be represented as follows:

sot = (I(o), d(1),LOS(o, 1), d(2),LOS(o, 2)..., d(n),

LOS(o, n), I(1), I(2), ..., I(n)),

where sot represents the ownship state, d(i) represents the
distance from ownship to aircraft i, LOS(o, i) represents the
loss of separation distance between aircraft o and aircraft i,
and n represents the number of closest aircraft to include in
the state of each agent. By defining the loss of separation
distance between two aircraft in the state space, the agents
should be able to develop a strategy for non-uniform loss of
separation requirements for different aircraft types. In this
work we consider the standard uniform loss of separation
requirements and look to explore this idea in future work.

2) Action Space: Radar in en route airspace is able to send
updates about aircraft position every 12 seconds [34]. To
provide our AI agents with a realistic Case Study, all agents
decide to change or maintain their desired speed every 12
seconds in simulation time. The action space for the agents
can be defined as follows:

At = [vmin, vt−1, vmax],

where vmin is the minimum allowed cruise speed (decel-
erate), vt−1 is the current speed of the aircraft (hold), and
vmax is the maximum allowed cruise speed (accelerate).

3) Terminal State: Termination in the episode was
achieved when all aircraft had exited the sector:

Naircraft = 0.



4) Reward Function: The reward function for the agents
were all identical, but locally applied to encourage coop-
eration between the agents. If two agents were in conflict,
they would both receive a penalty, but the remaining agents
that were not in conflict would not receive a penalty. Here a
conflict is defined as the distance between any two aircraft is
less than 3 nautical miles. The reward needed to be designed
to reflect the goal of this paper: safe separation and conflict
resolution. We were able to capture our goals in the following
reward function for the agents:

rt =


−1 if dco < 3

−α+ β · dco if dco < 10 and dco ≥ 3

0 otherwise
,

where dco is the distance from the ownship to the closest
aircraft in nautical miles, and α and β are small, positive
constants to penalize agents as they approach the loss of
separation distance. By defining the reward to reflect the
distance to the closest aircraft, this allows the agent to learn
to select actions to maintain safe separation requirements.

IV. SOLUTION APPROACH

To solve the BlueSky Case Study, we designed and
developed a novel deep multi-agent reinforcement learning
framework called the Deep Distributed Multi-Agent Rein-
forcement Learning framework (DD-MARL). In this section,
we introduce and describe the framework, then we explain
why this framework is needed to solve this Case Study.

To formulate this environment as a deep multi-agent
reinforcement learning problem, we utilized a centralized
learning with decentralized execution framework with one
neural network where the actor and critic share layers of
same the neural network, further reducing the number of
trainable parameters. By using one neural network, we can
train a model that improves the joint expected return of all
agents in the sector, which encourages cooperation between
the agents. We utilized the synchronous version of A3C,
A2C (advantage actor critic) which is shown to achieve the
same or better performance as compared to the asynchronous
version [30]. We also adapted the A2C algorithm to in-
corporate the PPO loss function defined in (4), which we
found led to a more stable policy and resulted in better final
performance. We follow a similar approach to [28] to split
the state into the two parts: ownship state information and all
other information, which we call the local state information,
slocal. We then encode the local state information using a fully
connected layer before combining the encoded state with the
ownship state information. From there, the combined state is
sent through two fully connected layers and produces two
outputs: the policy and value for a given state. Fig. 3 shows
an illustration of the the neural network architecture. With
this framework, we can implement the neural network to
all aircraft, instead of having a specified neural network for
all individual aircraft. In this way, the neural network is
acting as a centralized learner and distributing knowledge
to each aircraft. The neural network’s policy is distributed

Fig. 3. Illustration of the neural network architecture for A2C with shared
layers between the actor and critic. Each hidden layer is a fully connected
(FC) layer with 32 nodes for the encoded state and 256 nodes for the last
two layers.

at the beginning of each episode and updated at the end
of each episode which reduces the amount of information
that is sent to each aircraft, since sending an updated model
during the route could be computationally expensive. In this
formulation, each agent has identical neural networks, but
since they are evolving different states their actions can be
different.

It is also important to note that this framework is invariant
to the number of aircraft. When observing an en route sector,
aircraft are entering and exiting which creates a dynamic
environment with varying number of aircraft. Since our
approach does not depend on the number of aircraft, our
framework can handle any number of aircraft arriving based
on stochastic inter-arrival times.

V. NUMERICAL EXPERIMENTS

A. Interface

To test the performance of our proposed framework,
we utilized the BlueSky air traffic control simulator. This
simulator is built around python so we were able to quickly
obtain the state space information of all aircraft1. By design,
when restarting the simulation, all objectives were the same:
maintain safe separation and sequencing, resolve conflicts,
and minimize delay. Aircraft initial positions and available
speed changes did not change between simulation runs.

B. Environment Setting

For each simulation run in BlueSky, we discretized the
environment into episodes, where each run through the
simulation counted as one episode. We also introduced a
time-step, ∆t , so that after the agents selected an action,
the environment would evolve for ∆t seconds until a new
action was selected. We set ∆t to 12 seconds to allow for a
noticeable change in state from st → st+1 and to check the
safe-separation requirements at regular intervals.

There were many different parameters that needed to be
tuned and selected for this Case Study. We implemented the
adapted A2C concept mentioned earlier, with two hidden
layers consisting of 256 nodes. The encoding layer for the
N -closest aircraft state information consisted of 32 nodes
and we used the ReLU activation function for all hidden

1Code is available at https://github.com/marcbrittain



layers. The output of the actor used a Softmax activation
function and the output of the critic used a Linear activation
function. Other key parameter values included: learning rate
lr = 0.0001, γ = 0.99, ε = 0.2, α = 0.1, β = 0.005, and we
used the Adam optimizer for both the actor and critic loss
[35].

C. Case Study: Three routes with two intersections

In this problem, we considered three routes with two inter-
sections as shown in Fig. 2. In our DD-MARL framework,
the single neural network is implemented on each aircraft
as they enter the sector. Each agent is then able to select its
own desired speed which greatly increases the complexity of
this problem since the agents need to learn how to cooperate
in order to maintain safe-separation requirements. What also
makes this problem interesting is that each agent does not
have a complete representation of the state space since only
the ownship (any given agent) state information and the N-
closest agent state information are included. In this Case
Study, we included the 3 closest agents state information in
the state of the ownship. All other agents are not included
in the state of the ownship.

In the Case Study there were 30 total aircraft that entered
the airspace following a uniform distribution over 4, 5, and
6 minutes. This is an extremely difficult problem to solve
because the agents cannot simply memorize actions, the
agents need to develop a strategy in order to solve the
problem. The episode terminated when all 30 aircraft had
exited the sector, so the optimal solution in this problem is 30
goals achieved. Here we define goal achieved as an aircraft
exiting it the sector without conflict. It is important to note
that the difficulty of the Case Study is based on the inter-
arrival times of the aircraft. The inter-arrival time controls
the density of the airspace, therefore if the AI agents develop
a strategy based on stochastic inter-arrival times there is no
limit on the total number of aircraft to send through the
sector.

D. Algorithm Performance

In this section, we analyze the performance of DD-MARL
on the Case Study. We allowed the AI agents to train for
20,000 episodes and then evaluated the final policy for 200
episodes. We then calculated the mean and standard deviation
along with the median to evaluate the performance of the
final policy as shown in Table 12. We can see from Fig. 4
that the policy began converging to a good policy by around
episode 7,500, then began to further refine to a near optimal
policy for the remaining episodes. Training for only 20,000
episodes is computationally inexpensive as it equates to less
than 4 days of training using an NVIDIA Titan Xp (12GB)
graphics card. We suspect that this is due to the approach of
distributing one neural network to all aircraft and by allowing
shared layers between the actor and critic.

2A video of the final converged policy can be found at
https://www.youtube.com/watch?v=sjRGjiRZWxg

0 2500 5000 7500 10000 12500 15000 17500 20000

Episode

0

5

10

15

20

25

30

C
ou
nt

Learning Curve

Goals

Conflicts

Optimal

Fig. 4. Learning curve of the DD-MARL framework on the BlueSky Case
Study. Results are smoothed with a 30 episode rolling average for clarity.

TABLE I
PERFORMANCE OF THE POLICY TESTED FOR 200 EPISODES.

Mean Median
29.99 ± 0.141 30

We can see from Table 1, that on average we obtained a
score of 29.99 throughout the 200 episode testing phase. This
equates to resolving conflict 99.97% of the time both at the
intersection and along route. Given that this is a stochastic
environment, we speculate that there could be cases where
there is an orientation of aircraft where the 3 nautical mile
loss of separation distance can not be achieved, and in such
cases we would alert human ATC to resolve this type of
conflict. The median score removes any outliers from our
testing phase and we can see the median score is optimal.

VI. CONCLUSION

A novel deep multi-agent reinforcement learning frame-
work is proposed in this paper to separate en route aircraft as
a core component in an autonomous air traffic control system
in a structured en route sector. The Case Study is formulated
as a deep multi-agent reinforcement learning problem with
the actions of selecting desired aircraft speed. The problem
is then solved by using the DD-MARL framework, which
is shown to be capable of solving complex sequential deci-
sion making problems under uncertainty. According to our
knowledge, the major contribution of this research is that we
are the first research group to investigate the feasibility and
performance of autonomous aircraft separation with a deep
multi-agent reinforcement learning framework to enable an
automated, safe and efficient en route sector. The promising
results from our numerical experiments encourage us to
conduct future work on complex sectors involving non-
orthogonal intersections and merging points.



ACKNOWLEDGEMENTS

We would like to thank Xuxi Yang, Guodong Zhu, Josh
Bertram, Priyank Pradeep, and Xufang Zheng, whose input
and discussion helped in the success of this work. This re-
search is partially funded by the National Science Foundation
under Award No. 1718420, NASA Iowa Space Grant under
Award No. NNX16AL88H, and the NVIDIA GPU Grant
program.

REFERENCES

[1] National Research Council. (2014). Autonomy research for civil avia-
tion: toward a new era of flight. National Academies Press.

[2] Erzberger, H., 2005. “Automated conflict resolution for air traffic
control.”

[3] Erzberger, H., 2007. “Fast-time simulation evaluation of a conflict
resolution algorithm under high air traffic demand.”

[4] Erzberger, H., Heere, K., 2010. “Algorithm and operational concept
for resolving short-range conflicts.” Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering 224
(2), 225-243.

[5] Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson,
J. E. (2016). Unmanned aircraft system traffic management (utm)
concept of operations.

[6] SESAR, 2017. “U-space Blueprint.” URL
https://www.sesarju.eu/sites/default/files/documents/reports/U-
space%20Blueprint%20brochure%20final.PDF

[7] Mueller, E. R., Kopardekar, P. H., & Goodrich, K. H. (2017). Enabling
Airspace Integration for High-Density On-Demand Mobility Opera-
tions. In 17th AIAA Aviation Technology, Integration, and Operations
Conference (p. 3086).

[8] Google, 2015. “Google uas airspace system overview.” URL
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5
pager[1].pdf

[9] Amazon, A. P., 2015. “Revising the airspace model for the safe
integration of small unmanned aircraft systems.” Amazon Prime Air.

[10] Kopardekar, P. H., 2015. “Safely enabling civilian unmanned aerial
system (uas) operations in low-altitude airspace by unmanned aerial
system traffic management (utm).”

[11] Airbus, 2018. “Blueprint for the Sky” URL
https://storage.googleapis.com/blueprint/Airbus UTM Blueprint.pdf

[12] Holden, J., Goel, N., 2016. “Fast-forwarding to a future of on-demand
urban air transportation.” San Francisco, CA.

[13] Uber, 2018. “Uber elevate - the future of urban air transport.” URL
https://www.uber.com/info/elevate

[14] George Hunter and Peng Wei, “Service-Oriented Separation Assurance
for Small UAS Traffic Management”, Integrated Communications
Navigation and Surveillance (ICNS) Conference, Herndon, VA, April
2019

[15] Deepmind, 2017. Alphago at the future of go summit, 23-27 may
2017. URL https://deepmind.com/research/alphago/alphago-china/

[16] Hoekstra, J. M., & Ellerbroek, J. (2016, June). BlueSky ATC Simulator
Project: an Open Data and Open Source Approach. In Proceedings of
the 7th International Conference on Research in Air Transportation
(pp. 1-8). USA/Europe: FAA/Eurocontrol.

[17] Liang, X., Du, X., Wang, G., & Han, Z. (2018). Deep reinforcement
learning for traffic light control in vehicular networks. arXiv preprint
arXiv:1803.11115.

[18] Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning
agent for traffic signal control. arXiv preprint arXiv:1611.01142.

[19] Erzberger, H.,& Itoh, E. (2014). Design principles and algorithms for
air traffic arrival scheduling.

[20] Baxley, B. T., Johnson, W. C., Scardina, J., & Shay, R. F. (2016).
Air Traffic Management Technology Demonstration-1 Concept of
Operations (ATD-1 ConOps), Version 3.0.

[21] Wollkind, S., Valasek, J., & Ioerger, T. (2004). Automated conflict
resolution for air traffic management using cooperative multiagent
negotiation. In AIAA Guidance, Navigation, and Control Conference
and Exhibit (p. 4992).

[22] Amato, C., Shani, G., 2010. “High-level reinforcement learning in
strategy games.” In: Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-Volume
1. International Foundation for Autonomous Agents and Multiagent
Systems, pp. 75-82.

[23] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M., 2013. “Playing atari with deep reinforce-
ment learning.” arXiv preprint arXiv:1312.5602.

[24] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., et al., 2016. “Mastering the game of go with deep neural
networks and tree search.” nature 529 (7587), 484-489.

[25] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.
S., Yeo, M., ... & Quan, J. (2017). Starcraft II: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782.

[26] Brittain, M., & Wei, P. (2018). Autonomous Aircraft Sequencing
and Separation with Hierarchical Deep Reinforcement Learning. In
Proceedings of the International Conference for Research in Air
Transportation.

[27] Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentral-
ized non-communicating multiagent collision avoidance with deep
reinforcement learning. In 2017 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 285-292). IEEE.

[28] Everett, M., Chen, Y. F., & How, J. P. (2018). Motion planning among
dynamic, decision-making agents with deep reinforcement learning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (pp. 3052-3059). IEEE.

[29] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., ... & Kavukcuoglu, K. (2016, June). Asynchronous methods for
deep reinforcement learning. In International conference on machine
learning (pp. 1928-1937).

[30] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

[31] Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on
Systems, Man, And Cybernetics-Part C: Applications and Reviews, 38
(2), 2008.

[32] Tan, Ming. “Multi-agent reinforcement learning: Independent vs. co-
operative agents.” Proceedings of the tenth international conference
on machine learning. 1993.

[33] Matignon, L., Laurent, G. J., & Le Fort-Piat, N. (2012). Independent
reinforcement learners in cooperative markov games: a survey regard-
ing coordination problems. The Knowledge Engineering Review, 27(1),
1-31.

[34] Belobaba, P., Odoni, A., & Barnhart, C. (Eds.). (2015). The global
airline industry. John Wiley & Sons.

[35] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.


