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Urban Air Mobility (UAM) will result in numerous aircraft which will need to respond

to a dynamically changing airspace to safely reach their destinations. We use a highly effi-

cient Markov Decision Process (MDP) based trajectory planner to demonstrate multi-agent

distributed trajectory planning that can safely avoid cooperative and non-cooperative actors in

the high-density free flight airspace. We demonstrate the algorithm in an urban setting where

multiple aircraft all navigate to their designated landing site while avoiding cooperative and

non-cooperative aircraft. We study the algorithm performance as the aircraft density increases

to demonstrate scalability and the effect of cooperative versus non-cooperative actors in the

environment.

I. Introduction

Urban Air Mobility (UAM) is a concept for future air transportation in which partially or fully autonomous air vehicles

transport cargo and passengers through dense urban environments. For early adopters this technology offers the promise

of bypassing ground-based freeways and hours-long commutes. As the technology matures, it will connect urban centers

with outlying towns extending the reach of metropolitan areas.

As we contemplate this future, an important question to consider is how will this air traffic be managed? Will a

structured airspace be required to enforce some order on the aircraft similar to today’s air traffic management system?

Or can improvements in technology allow a more dynamic, less structured airspace design to be used?

This paper offers a demonstration of an algorithm that can efficiently provide guidance to aircraft operating in

high-density airspace containing many aircraft. The algorithm allows each aircraft to make its own decisions in a

distributed manner using simple inputs as would be available from sensors such as radar, LIDAR or systems such as

ADS-B. The computational burden is very light due to the algorithm’s efficiency and is capable of running on embedded

processors found in UAV and UAM aircraft.

The algorithm works in a cooperative setting, meaning that all aircraft in the airspace are using the algorithm

from this paper, and also works in a non-cooperative setting, meaning that one or more aircraft in the airspace are not

performing any avoidance. A cooperative setting is the most desirable case as both aircraft can participate in avoidance

to ensure separation. However, it requires active participation from every aircraft and is vulnerable to fault conditions or

rogue actors. If an aircraft’s collision avoidance system fails due to a fault condition or sensor failure, it will not behave

as expected or may not perform any avoidance at all. We demonstrate the algorithm’s performance in both cases.

We also test the algorithms ability to scale to higher densities, while acknowledging that there is some upper limit to

the number of aircraft that can be supported by a given airspace due to physical constraints. We perform simulations to

evaluate the algorithm under different densities while monitoring for Near Mid-Air Collisions (NMACs). And finally

we provide timing measurements of the performance of the algorithm.

II. Related Work

NASA, Uber and Airbus have been exploring the use of vertical takeoff and landing (VTOL) aircraft for Urban Air

Mobility (UAM) [1–5]. In general, the UAM concept calls for UAM aircraft taking off from small-scale airports known

as vertiports where VTOL aircraft depart and arrive.
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An unstructured airspace approach known as “free flight" has been proposed to cope with the ongoing congestion

of the current ATC system. It was shown in [6, 7] that free flight with airborne separation is able to handle a higher

traffic density, and [8] found free flight can also bring fuel and time efficiency. In a free flight framework, each aircraft

is responsible for separation assurance and conflict resolution. [9] shows that free flight is potentially feasible due to

enabling technologies such as Global Positioning Systems (GPS), data link communications like Automatic Dependence

Surveillance-Broadcast (ADS-B) [10], Traffic Alert and Collision Avoidance Systems (TCAS) [11], but would require

powerful onboard computation.

In terms of algorithms used for trajectory planning and collision avoidance, there is extensive literature on the topic.

In centralized methods, a central supervising controller resolves conflicts between aircraft. The state of each aircraft,

obstacles, and trajectory constraints as well as the state of the terminal area are observable to the controller via sensors,

radar, etc. The central controller precomputes trajectories for all aircraft before flight, typically by formulating the

problem in and optimal control framework and solving the problem with varying methods; examples are: semidefinite

programming [12], nonlinear programming [13, 14], mixed integer linear programming [15–18], mixed integer quadratic

programming [19], sequential convex programming [20, 21], second-order cone programming [22], evolutionary

techniques [23, 24], and particle swarm optimization [25]. One common thread among centralized approaches is that in

order to pursue a global optimum, they must consider each aircraft and obstacle in the space. This necessarily leads

to scalability issues with large numbers of aircraft and obstacles. Also, as new aircraft enter the scene, centralized

algorithms typically need to recompute part or all of the problem in order to arrive at a new global optimum.

In contrast, decentralized methods scale better with respect to the number of aircraft and objects in the system, but

typically cannot obtain globally optimal solutions. However, decentralized methods typically do not have a single point of

failure, so may be considered more robust than a centralized approach [26]. Conflicts are resolved by each aircraft locally

in decentralized approaches and the underlying method can be considered as cooperative or non-cooperative. Examples

of cooperative methods using some form of communication are [27–30] which typically use the communication to

make smaller optimal control problems that can be solved locally. Other approaches such as [31, 32] use time slices to

compute collision free paths one agent at a time.

Computational geometry methods such as visibility graphs [33] and Voronoi diagrams [34] can also generate paths

for aircraft, but typically do not take dynamic constraints into account. Within the robotics community several sampling

based dynamics aware methods have been created: probabilistic roadmaps [35], RRT [36], RRT* [37], and RT-RRT*

[38] (which may be applied in centralized and decentralized contexts.) These methods attempt to generate a connected

graph or tree of collision-free states that are very near each other so that a path from a start to a goal position can be

determined via a path through the graph or tree. The advantage of these methods is they can discover conflict-free paths

through high dimensional spaces with many obstacles, but the graph/tree must either be pre-computed or in the case of

RT-RRT* can be computed on-line by fixing the amount of computation allowed during any compute cycle. While none

of these methods compute a truly optimal path with a finite number of samples, with enough samples the paths can be

good enough for many problems and can further be smoothed after extraction from the graph/tree.

Collision avoidance can be solved with Model Predictive Control [39, 40] with high computational costs, and

potential fields [41, 42] which are fast but do not provide guarantees of collision avoidance. Machine learning methods

have also been used [43–46]. The methods perform well but require a great deal of time to train beforehand. The

Monte Carlo Tree Search method used in [47] solves the problem efficiently by using a fixed window of computation.

Collision avoidance can also be solved geometrically [48–51] and the computation time only grows linearly as the

number of aircraft increases. DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems) [52] is another

geometric approach developed by NASA which provides heading and altitude guidance to avoid collisions to remote

pilots. ACAS-X is a collision avoidance system also based off Markov Decision Processes that provides 1-on-1 collision

avoidance [53].

Within the framework of the literature, the method in this paper phrases the problem as a Markov Decision Process

(MDP). MDPs are known to be intractable for large problems, but a recently discovered method for efficiently computing

them was described in [54]. We harness this implementation and demonstrate its efficient performance in a UAM

context with multiple UAM vehicles navigating between multiple vertiports.

III. Background

Markov Decision Processes (MDPs) are a framework for sequential decision making with broad applications to finance,

robotics, operations research and many other domains [55]. MDPs are formulated as the tuple (st, at, rt, t) where st ∈ S
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Fig. 1 Multiple aircraft with multiple goals. Colored spheres represent the goals. Airplanes and their history

trails are colored according to their goal. Negative rewards are placed around terrain features so that UAVs

avoid collision with terrain.

is the state at a given time t, at ∈ A is the action taken by the agent at time t as a result of the decision process, rt
is the reward received by the agent as a result of taking the action at from st and arriving at st+1, and T(st, a, st+1)

is a transition function that describes the dynamics of the environment and capture the probability p(st+1 |st, at ) of

transitioning to a state st+1 given the action at taken from state st .

A policy π can be defined that maps each state s ∈ S to an action a ∈ A. From a given policy π ∈ Π a value function

Vπ(s) can be computed that computes the expected return that will be obtained within the environment by following the

policy π.

The solution of an MDP is termed the optimal policy π∗, which defines the optimal action a∗ ∈ A that can be taken

from each state s ∈ S to maximize the expected return. From this optimal policy π∗ the optimal value function V∗(s)

can be computed which describes the maximum expected value that can be obtained from each state s ∈ S. And from

the optimal value function V∗(s), the optimal policy π∗ can also easily be recovered.

IV. Method

We formulate the problem as a Markov Decision Process and use the algorithm described in [54] to efficiently solve the

MDP. The algorithm in [54] was shown to efficiently perform collision avoidance while navigating to a goal in a 2D

discretized state space. We extend [54] by moving to a 3D state space which is fully continuous and model the aircraft

in 3D using a Dubin’s aircraft model which is constrained to operate in a manner similar to a UAM air taxi in forward

flight mode.

A. Dynamic Model

[56] proposes an extension of the Dubin’s car model to aircraft using an optimal control framework relying on Pontraygin’s

Maximum Principle. [57] extends the model using a more realistic formulation from an aerospace engineering literature.
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Table 1 Limits on aircraft performance to approximate an air taxi.

Vmin Vmax
Ûψmin

Ûψmax αmin αmax φmin φmax γmin γmax

(Kts) (Kts) (deg/s) (deg/s) (deg) (deg) (deg) (deg) (deg) (deg)

47 133 -30 30 -5 20 -20 20 -20 20

Note that the model assumes an airspeed controller that maintains a commanded airspeed through the duration of flight.

A pseudo-6DOF formulation is proposed in [58] and [59].

The model used here is based off a pseudo-6DOF formulation, but uses performance limits that make the aircraft

perform similar to a Dubin’s aircraft with gentle climbs and bank angles suitable for a UAM passenger aircraft.

• nx : Throttle acceleration directed out the nose of the aircraft in g’s

• V : Airspeed in meters/second.

• γ: Flight path angle in radians.

• x, y, z: position in NED coordinates in meters where altitude h = −z

• φ: Roll angle in radians

• ψ: Horizontal azimuth angle in radians

• α: Angle of attack in radians with respect to the flight path vector

The inputs to the model are: (1) the thrust nx , (2) the rate of change of angle of attack Ûα and (3) the rate of change of

the roll angle Ûφ.

The equations of motion for the aircraft are:

ÛV = g [nx cosα − sin γ] , (1)

Ûγ =
g

V

[

n f cos φ − cos γ
]

, (2)

Ûψ = g

[

n f sin φ

V cos γ

]

, (3)

where the acceleration exerted out the top of the aircraft n f in gs is defined as:

n f = nx sinα + L, (4)

with a lift acceleration of L = 0.9. Here, 1 “g" is a unit of acceleration equivalent to 9.8 m/s2. L was chosen to provide

some amount of lift while in flight to counteract gravity and provide a stable flight condition with a low positive α angle

of attack in the pseudo-6dof model.

The kinematic equations are:

Ûx = V cos γ cosψ (5)

Ûy = V cos γ sinψ (6)

Ûz = V sin γ. (7)

While this model is not aerodynamically comprehensive, it is sufficient to describe aircraft motion suitable for

examining the algorithm behavior without loss of generality. The algorithm can integrate with any aircraft dynamics

model that allows the trajectory to be computed forward in time.

Performance limits are used to make the aircraft dynamics perform like a Dubin’s aircraft similar to what may be

expected from a UAM air taxi, as shown in Table 1.

1. Trajectory Forward Projection

At each time step, each aircraft has a set of possible actions it can take and each of those actions will lead to different

future states that the aircraft may reach. When we use the aircraft dynamics to compute the result of taking an action for
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a fixed amount of time, this is known as forward projection. When successive timesteps over a time period t are used to

show the future trajectory resulting from an action, this is known as trajectory forward projection with window t.

If the actions a ∈ A were fully continuous, we could describe the result of the forward projection of all actions as

the reachability set, R ⊂ S from our initial state s ∈ S. However, for computational efficiency we use a discrete set

of actions â ∈ A. When we use forward projection on this discrete set of actions, we obtain an approximation of the

reachabililty set R̂ ⊂ R. If the discrete actions and timesteps are chosen wisely, they can however be a reasonable and

useful approximation of the reachability set.

For this problem, we use a discrete time step of 0.1 seconds and a window of 3.0 seconds. For the trajectory forward

projection, we keep the action fixed over the window and generate one trajectory for each action â. Once the forward

projection is completed, the resulting states from the trajectories form an approximation of the reachability set R̂. The

value of each of these states s ∈ R̂ are computed within the solution of the MDP, which represents the points within

the value function that are reachable within the trajectory forward projection window. If we compute the state with

maximum value and then determine the action which results in that state, we then know the most valuable action to take

from our current state. This action is then applied for the simulation’s 0.1 second time step resulting in a 10 Hz rate

action selection.

Thus the agent follows the optimal policy of the MDP at each time step by determining which future reachable state

is most valuable, and then takes the action in the next time step that will lead it towards that state.

B. MDP Formulation

1. State Space

We define the environment where the aircraft operates within a 25 km by 25 km by 25 km volume which is treated

as a continuous state space. The state includes all the information each aircraft needs for its decision making: the full

aircraft state, the position and velocity of every other aircraft. Each aircraft is aware of its own state produced by the

aircraft dynamics model. For each aircraft, the state is formed by concatenating the following:

• ζ the aircraft state: position x, y, z, the heading angle ψ, the flight path angle γ, and the speed V .

• for each other aircraft fj, ∀ j ∈ J: the position fj,x, fj,y, fj,z and velocity fj,vx , fj,vy , fj,vz ,

so = [ζ, f1, · · · , fj] (8)

where j represents the number of other aircraft.

2. Action Space

Inputs to the dynamics model are (1) the thrust nx , (2) the rate of change of angle of attack Ûα and (3) the rate of

change of the roll angle Ûφ.

The action space is a discrete set of actions that are distributed logarithmicly through the range of each input. The

logarithmic distribution is designed to have a fine granularity of inputs near the zero point of the input and a coarse

granularity of inputs near the extreme ends of the input range. The philosophy here is that more control is needed when

trying to make small corrections to correct for small perturbations or refinements of the trajectory, and that large control

inputs are required for gross course corrections.

The action space is then defined as follows for both pitch inputs and roll inputs: 15 discrete inputs, 7 of which are

positive, 7 of which are negative, and the value 0. The 7 positive and 7 negative inputs are mirror values of each other

and are based off a linear spacing of coefficients κ from .0001 to .13:

κ = {.0001, .02175, .0434, .06505, .0867, .10835, .13} (9)

The logarithmically spaced values in radians are then computed as follows:

kr = 10κ − 1 (10)

= {0.00023, 0.051, 0.105, 0.162, 0.221, 0.283, 0.349} (11)
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Fig. 2 Visualization of negative rewards. Each aircraft has negative rewards positioned in front of it for

collision avoidance with other aircraft. Terrain features are covered by negative rewards which were manually

placed and sized for terrain avoidance. A similar technique can be used for weather.

Or in degrees:

kd = {0.013, 2.943, 6.022, 9.258, 12.660, 16.236, 19.994} (12)

Making the final distribution in degrees:

Kd = {−kd, 0, kd} (13)

= {−19.99,−16.24,−12.66,−9.26,−6.02,−2.94,−0.01, 0, 0.01, 2.94, 6.02, 9.26, 12.66, 16.24, 19.99}, (14)

with the pitch and roll inputs both equal to these logarithmic distributions:

Ûα = Kd (15)

Ûφ = Kd (16)

(17)

nx is a simple linear distribution: {−2,−1, 0, 1, 2, 3, 4}.

The joint action space is then:

A = { Ûα, Ûφ, nx}. (18)

3. Reward Function

The primary mechanism to control the behavior of an agent in a Markov Decision Process (MDP) is through the

Reward Function. By providing positive and negative rewards to the agent, it is able to determine which actions lead to

positive reward and the solution of an MDP maximizes the expectation of future reward.

Following the approach used in [54], we will treat each negative reward as a “risk well", which is a region of negative

reward (i.e., a penalty) which is more intense at the center and decays outward until a fixed radius is reached, where

after no penalty is applied.

We present our reward function in terms of the behaviors we wish to obtain in Table 2. In this table, p̂ represents

the current position of an aircraft and v̂ represents that aircraft’s current linear velocity. In some cases we project the

aircraft’s position forward in time with an expression p̂ + v̂t and then define a range of time as in ∀t ∈ {0, 1, 2} to
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Table 2 Rewards created for each aircraft

For each other aircraft:

Magnitude Decay factor Location Radius Timesteps Comment

−1000 .97 p̂ + v̂t 300 + 10t ∀t ∈ {−5, 0, 5, 10, 15} Collision avoidance, 5 rewards

For each terrain feature:

Magnitude Decay factor Location Radius Timesteps Comment

−1000 .99 manually placed manually selected N/A Terrain avoidance

For aircraft’s goal:

Magnitude Decay factor Location Radius Timesteps Comment

200 .999 manually placed ∞ N/A Vertiport attraction

indicate that we create a reward at the location of the aircraft at each timestep in the future indicated by the range of t.

See Figure 2 for a visualization of the rewards.

All aircraft also receive a penalty below a certain altitude which prevents the aircraft from plummeting into the

terrain. We define a terrain “floor" hfloor which is the 5th percentile of all terrain vertices. The NASA SRTM terrain data

[60] contains some locations of bad data, so the 5th percentile is used to eliminate any outliers when determining a good

average minimum height. For any state with an altitude of h from the hard deck up to an altitude of hpenalty = hfloor + 200,

a penalty is applied rpenalty = −(10000 − h) which is a very strong negative reward that will override any other positive

rewards in the game.

To avoid collision with terrain, for this paper negative rewards were manually placed in the terrain such that they

covered the terrain features with a hemisphere of negative reward, providing a repulsive force that prevents collision. (In

future research, this could be made more automatic for true terrain or building avoidance.)

C. Algorithm

The algorithm in this paper is based off the algorithm in [54], which defines the concept of a peak in the value function

that results from a reward in the space. Peaks are located in the state space at the locations of positive rewards. The

algorithm takes as input a number of pre-allocated data structures that described the peaks:

• peakLocations: Locations of each peak within the state space.

• propLimits: A limit on how far the value function of each peak should be allowed to propagate. For our positive

rewards in the state space, this is ∞. For negative rewards, this is a fixed radius that represents the distance at

which another aircraft poses no risk.

• propLimits: A limit on how far the value function of each peak should be allowed to propagate. For our positive

rewards in the state space, this is ∞. For negative rewards, this is a fixed radius that represents the distance at

which another aircraft or terrain feature poses no risk.

• discountFactors: A parameter for each reward which allows the reward to decay outward as distance from the

center increases.

• rwdMagnitudes: The magnitude of each of the rewards.

• states: The states at which the value function should be computed for this MDP. This allows flexibility of

computing only neighboring states needed for following the optimal policy, or large batches for visualizing the

value function for debug.

We reimplement the algorithm proposed in [54] to vectorize the algorithm for more efficient operation. A vectorized

algorithm is one which is designed to perform identical computations at each step over a vector of data inputs and is

often accelerated by SIMD (Same Instruction Multiple Data) units available in modern CPUs. Libraries are available

that assist in mapping code to these accelerators. In our case, within python a library known as Numpy provides this
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Algorithm 1 Distributed UAM using FastMDP algorithm

1: procedure DistributedUam(aircraftState, worldState)

2: S0 ← randomized initial aircraft states

3: A← aircraft actions (precomputed)

4: L← aircraft limits (precomputed)

5: St+1 ← allocated space

6: while aircraft remain do

7: for each aircraft do

8: st ← St [aircra f t]

9: // Build peaks per Table 2

10: P+ ←build pos rewards

11: P− ←build neg rewards in Standard Positive Form

12: P∗ ←build neg rewards for terrain in Standard Positive Form

13: // Perform forward projection per Section IV.A.1

14: ∆1 ← f wdProject(st, A, L, 0.1 s)

15: ∆10 ← f wdProject(st, A, L, 1.0 s)

16: // Compute the value at each reachable state

17: V∗ ← allocate space for each reachable state

18: for sj ∈ ∆10 do

19: // First for positive peaks

20: for pi ∈ P+ do

21: dp ←




sj − location(pi )






2
⊲ distance

22: rp ← reward(pi )

23: γp ← discount(pi )

24: V+(pi ) ← |rp | · γ
dp
p

25: end for

26: V+max ← max
pi

V+

27: // Next for negative peaks (in Standard Positive Form) including terrain

28: for ni ∈ {P
−
, P∗ } do

29: dn ←




sj − location(ni )






2
⊲ distance

30: ρn ← negDisti < radius(ni ) ⊲ within radius

31: rn ← reward(ni )

32: γn ← discount(ni )

33: V−(pi ) ← int(ρn) · |rn | · γ
dn
n

34: end for

35: V−max ← max
pi

V−

36: // Hard deck penalty

37: if altitude(st ) < penaltyAlt then

38: Vdeck ← 1000 − altitude(st )

39: else

40: Vdeck ← 0

41: end if

42: V∗[st ] ← V+max −V
−
max −Vdeck

43: end for

44: // Identify the most valuable action

45: imax ← arg max
s
(V∗)

46: // For illustration, the corresponding value

47: maxValue← V∗[imax ]

48: // And the next state when taking the action

49: st+1 ← ∆1[imax ]

50: St+1[aircra f t] ← st+1

51: end for

52: // Now that all aircraft have selected an action, apply it

53: S← St+1

54: end while

55: end procedure
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capability. Note that for true real-time embedded performance, the code would be ported to a language such as C or

C++, but this is a reasonable approximation as Numpy relies on C and C++ libraries to perform its acceleration.

V. Experiment Setup

We demonstrate this trajectory planner in a 3D aircraft simulation showing a view of the aircraft, the goals, and the

terrain as shown in Figure 1. The simulation covers a 25km by 25km by 25km volume which contains a configurable

number of aircraft and goals. The terrain is derived from NASA SRTM radar data [60] in the Lake Tahoe, California

area. The height has been exaggerated by a factor of 6 to represent a UAM operating area with terrain features which

must be avoided with vertical maneuvering. While in this case the terrain features correspond to mountains, they could

instead represent skyscrapers or population centers. In the simulations and videos, this forces the simulated UAM

aircraft into more conflicts than would be observed with a flat environment. The location of the goals were manually

selected to lie within flat, relatively featureless areas of the terrain and represent vertiports.

As described above, all aircraft are driven by the algorithm and are assigned a goal. The color of the aircraft

corresponds to the color of their goal. At each time step (0.1 seconds), the simulation updates the state for each aircraft.

Each aircraft creates and solves its own MDP using the highly efficient algorithm presented in this paper, and then

uses the solution of the MDP to select its next action. The actions of all aircraft are performed simultaneously in the

simulation at the beginning of the next time step, simulation then advances by one time step (.1 seconds), whereupon the

process repeats. Note here that because the environment changes, a new MDP is calculated at each time step, which is

made possible by the performance of the algorithm in [54].

We measure performance in two ways. First, we characterize the time it takes for the algorithm to compute the

solution of the MDP. Second, we examine the algorithms ability to reach the goal while avoiding collisions. We define

a Near Mid-Air Collision (NMAC) as an aircraft coming within 100 meters of another aircraft during flight. As we

vary experimental parameters, we track the number of goals obtained and the number of NMACs that occur over the

simulation duration.

VI. Results

Results of simulation comparing cooperative and non-cooperative experiments are shown in Figure 3. In these

simulations, there are three color-coded teams of aircraft (red, green, blue) with each team’s color according to which

vertiport it is navigating to (rendered as a sphere with matching color) as shown in Figure 1. The number of aircraft in

the simulation {3, 15, 30, . . .} results from the number of aircraft per team {1, 5, 10, . . .}.

Over the cooperative simulation runs, no collisions between any aircraft occurred. For non-cooperative simulations,

one-third of the aircraft were set to be non-cooperative intruders. These intruders are still run by the algorithm, but

they were not presented with any rewards related to any other aircraft (including other intruders). While they can still

successfully navigate to the goal while avoiding terrain, they are blind to other aircraft. Thus, any collisions or NMACs

between two intruders are ignored during the non-cooperative simulation. As expected, NMACs increased with an

increase in the number of blind intruders. However, despite the large numbers of intruders the remaining two-thirds of

the aircraft (red and blue aircraft) managed to avoid collisions with themselves or the intruders remakably well.

Timing measurements were performed on a laptop class PC with an Intel i9-8950HK CPU running at 2.90 GHz

with 32 GB RAM. For the tests the number of aircraft were increased and the time to execute the algorithm per aircraft

is reported. Table 3 shows the results showing a linear increase in performance (meaning O(n) performance) with

increased number of aircraft. Note that our target execution time for a 10 Hz frame rate (100 ms period) is exceeded at

90 aircraft (30 aircraft per team) indicating that further optimization is needed to scale to larger numbers of aircraft.

An alternate version of the algorithm is in development and early results show that it will dramatically improve the

performance beyond what is reported here.

We show sample videos of the simulation to provide intuition on the complexity of the task and performance of the

algorithm. Two videos are provided that show 30 aircraft, one of which shows the negative rewards for terrain in order

to provide insight into how the algorithm functions. A third video is provided with 150 aircraft to provide insight into

the density of the airspace. Note that in all three videos, the aircraft are rendered with a wingspan of 200 meters for

improved visibility, though in simulation the actual wingspan is 5 meters.
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Fig. 3 Comparing results of cooperative flight versus non-cooperative flight. As expected, NMACS and

Collisions increase when non-cooperative agents are present in the airspace. Despite the presence of multiple

intruders, the number of collisions has been kept to a very low value. Values shown here are averaged over

10 Monte Carlo runs with random initial positions of aircraft. In the uncooperative measurement, 1/3 of

the aircraft are uncooperative and do not attempt to avoid any other aircraft, acting as blind intruders. Any

collisions or NMACS between any two intruders are ignored as they may blindly fly into each other.

Fig. 4 Example of 150 agents to illustrate the difficulty of avoiding NMACs and collisions. Agents are rendered

with 200 meter wingspan for improved visibility, though in simulation actual wingspan of air taxi is 5 meters.

10



Table 3 Timing measurements of algorithm performance for each frame as the number of aircraft increases.

Number of aircraft Timing (ms)

3 34.9

15 43.9

30 58.1

45 67.4

60 77.1

75 95.2

90 116.4

105 123.6

120 137.7

135 149.8

150 162.6

Table 4 Links to videos

Number of aircraft URL Comment

30 https://youtu.be/vX1BUC9bLFU Rewards not rendered

30 https://youtu.be/7NXnl5cFWnM Rewards are rendered

150 https://youtu.be/_B9Ath-3gQI Rewards not rendered

VII. Conclusion

In this paper we have demonstrated a computationally efficient distributed computational guidance algorithm suitable

for high-density Urban Air Mobility applications. The algorithm can work in both cooperative and non-cooperative

collision avoidance contexts. We compare operation of collision avoidance in both scenarios and show that the algorithm

successfully avoids collisions even with large numbers of non-cooperative agents in the environment. We show that

performance is suitable for embedded real-time applications, but to scale to large numbers of aircraft additional

optimizations are required. Future research is already under way to further optimize the algorithm and early results

show a dramatic improvement which will permit faster frame rates while scaling to larger numbers of aircraft and other

obstacles.

In other future research, a method to automatically construct negative rewards from terrain should be pursued and

alternative ways of capturing the terrain efficiently should be explored. Risk wells seem very appropriate for small

obstacles such as other aircraft, but a new approach will be needed to efficiently represent terrain.
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