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Autonomous Free Flight Operations in Urban Air
Mobility with Computational Guidance

and Collision Avoidance
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Abstract—The use of electrical vertical takeoff and landing
(eVTOL) aircraft to provide efficient, high-speed, on-demand air
transportation within a metropolitan area is a topic of increasing
interest, which is expected to bring fundamental changes to the
city infrastructures and daily commutes. NASA, Uber, and Airbus
have been exploring this exciting concept of Urban Air Mobility
(UAM), which has the potential to provide meaningful door-
to-door trip time savings compared with automobiles. However,
the ability to manage many of these eVTOL aircraft safely in
a congested urban area presents a challenge unprecedented in
air traffic management. In order to enable safe and efficient
autonomous on-demand free flight operations in UAM, a compu-
tational guidance algorithm with collision avoidance capability is
designed and analyzed. The approach proposed in this paper is
to formulate this problem as a Markov Decision Process (MDP)
and solve it using an online algorithm Monte Carlo Tree Search
(MCTS). For the sake of illustration, a high-density free flight
airspace simulator is created to test the performance of this
algorithm. Numerical experiment results show that this proposed
algorithm has fewer conflicts and near mid-air collisions when
compared with Optimal Reciprocal Collision Avoidance (ORCA),
a state-of-the-art collision avoidance strategy.

I. INTRODUCTION

A. Motivation

Over the past several years, there has been an increasing
interest in Urban Air Mobility (UAM) operations, including
NASA, Uber, and Airbus [1]–[3]. Companies such as Airbus,
Bell, Embraer, Joby, Zee Aero, Pipistrel, Volocopter, and
Aurora Flight Sciences have been working to build and test
electric vertical takeoff and landing (eVTOL) aircraft. The
UAM operations are expected to fundamentally change cities
and people’s lives to reduce commute time and stress. In UAM,
orders of magnitude more aircraft than those operating today
would be required for this transportation mode to serve a
significant proportion of the public [4]. In this paper, we focus
on overcoming one specific technical barrier: creating a safe
onboard guidance and collision avoidance system for eVTOLs
to operate in very-high-density air traffic conditions, through
combining the power of onboard aircraft intelligence (vehicle
technology) and the advantage of the free flight idea (airspace
operation concept).

The concept of “Free Flight” was proposed previously
for future air transportation applications because it has the
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potential to cope with the ongoing congestion of the current
ATC system. It was shown in previous work [5], [6] that
free flight with airborne separation is able to handle a higher
traffic density by utilizing more airspace volume. Besides,
free flight can also bring fuel and time efficiency [7]. In
a free flight framework, it is implied that aircraft will be
responsible for their own separation assurance and conflict
resolution [7]. The loss of an airway structure may make the
process of detecting and avoiding conflicts between aircraft
more complex. Previous studies [8] show that detecting and
avoiding conflicts in free flight is potentially feasible because
of enabling technologies such as Global Positioning Systems
(GPS), data link communications like Automatic Dependence
Surveillance-Broadcast (ADSB) [9], Traffic Alert and Colli-
sion Avoidance Systems (TCAS) [10], and powerful onboard
computation capability. In addition, automated conflict detec-
tion and resolution tools [11] will be required to aid pilots and
ground controllers in ensuring traffic separation and conflict
resolution.

In this paper, under the free flight framework, a computa-
tional guidance algorithm with collision avoidance capability
is proposed to guide the aircraft to its destination, where the
aircraft dynamics is modeled based on the tandem tilt-wing
eVTOL (Airbus Vahana) from Airbus A3 [12], as shown in
Fig. 1. The proposed algorithm in this paper uses Markov De-
cision Process (MDP) and Monte Carlo Tree Search (MCTS),
where the input of this algorithm is the current position and
velocity of other surrounding aircraft, and the position of the
trip destination for the aircraft we are controlling. Through
obtained sensing information of other aircraft, the controlled
aircraft will perform online sequential decision making to
select actions in real-time with onboard avionics computation.
The series of actions will guide the aircraft to reach its goal
and avoid potential conflicts quickly. The proposed algorithm
provides a potential solution framework to enable autonomous
on-demand free flight operations in urban air mobility.

B. Related Work
Decades of research have explored a variety of approaches

for designing collision avoidance systems for aircraft, which
can be categorized based on the following criteria:

1) Centralized/Decentralized [13]: whether the problem is
solved by a central supervising controller (centralized)
or by each aircraft individually (decentralized).

2) Planning/Reacting [14]: the planning approach generates
feasible or even optimal paths ahead of time; whereas
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Fig. 1: Airbus Vahana with tandem tilt-wing configuration
during the cruise phase [12].

the reacting approach typically uses an online collision
avoidance system to respond to dangerous situations.

3) Cooperative/Non-cooperative [13]: whether there exists
online communication between aircraft or between air-
craft and the central controller.

In the following, we will briefly discuss the related work
categorized based on the first criterion: centralized method
and decentralized method. The second and third criteria will
be also discussed in each category.

In centralized methods, the conflicts between aircraft are
resolved by a central supervising controller. Under such sce-
nario, the state of each aircraft, the obstacle information,
the trajectory constraint as well as the terminal condition
are known to the central controller (thus centralized methods
are always cooperative), and the central controller in return
designs the whole individual trajectory for all aircraft before
the flight, typically by formulating it to an optimal control
problem. These methods can be based on semidefinite pro-
gramming [15], nonlinear programming [16], [17], mixed-
integer linear programming [18]–[21], mixed-integer quadratic
programming [22], sequential convex programming [23], [24],
second-order cone programming [25], evolutionary techniques
[26], [27], and particle swarm optimization [28]. Besides
formulating this problem using optimal control framework,
roadmap methods such as visibility graph [29] and Voronoi
diagrams [30] can also handle the path planning problem
for aircraft. However, calculating the exact solutions will
become impractical when the state space becomes large or
high-dimensional. To address this issue, sample-based plan-
ning algorithms are proposed, such as probabilistic roadmaps
[31], RRT [32], and RRT* [33]. These centralized methods
often pursue the global optimality of the solution. However,
as the number of aircraft grows, the computation time of
these methods typically scales exponentially. Moreover, these
centralized planning approaches typically need to be re-run,
as new information in the environment is updated (e.g., a new
aircraft enters the airspace).

On the other hand, decentralized methods scale better with
respect to the number of agents and are more robust since they
do not possess a single point of failure [34]. In decentralized
methods, all the conflicts are resolved by each aircraft indi-
vidually. Decentralized methods can be cooperative and non-
cooperative. Researchers have proposed several algorithms

under the case where the communication between aircraft
can be successfully established (cooperative) [35]. Algorithms
in [36], [37] are based on message-passing schemes, which
resolve local (e.g., pairwise) conflicts without needing to form
a joint optimization problem between all members of the
team. In [13], every agent is allotted a time slot to compute
a dynamically feasible and collision-free path using mixed-
integer linear programming. In [38], the author recast the
global optimization problem as several local problems, which
are then iteratively solved by the agents in a decentralized way.
In the Decentralized Model Predictive Control approach [39],
the aircraft solve their own sub-problem one after the other and
send the action to other subsystems through communication.

The work in this paper focuses on scenarios where commu-
nication cannot be reliably established (non-cooperative) and
the aircraft will take action at each time step based on the
sensor information. Many works fall in this category: Model
Predictive Control [40], [41] can be used to solve the collision
avoidance problem, but the computation load is relatively high.
Potential field method [42] is computationally fast. However,
a navigation function is required to make it a complete path
planner [43], [44], which involves discretizing the configu-
ration space. With the help of machine learning and rein-
forcement learning [45]–[49], collision avoidance algorithm
can have a promising performance, but usually needs much
time to train. Using the Monte Carlo Tree Search algorithm
to solve this problem [50] does not need model training, and
the algorithm can finish in any predefined computation time.
However, the aircraft can only adopt several discretized actions
at each time step. Geometry based algorithms [51]–[54] can
also be applied for collision avoidance problem and the com-
putation time only grows linearly with the increasing number
of aircraft. The drawback of these geometric approaches is
that it cannot look ahead for more than one step (it only pays
attention to the current action and does not consider the effect
of subsequent actions). The outcome can be local optimal in
the view of the global trajectory.

In this paper, we formulate this guidance and collision
avoidance system as a MDP and solve this MDP using the
online algorithm MCTS. There are similar works using MDP
formulation which solve this problem offline [55]–[57]. Offline
solvers require large computation time upfront to compute
the optimal policy for the full state space and discrete MDP
formulations. Offline methods are typically not adaptive to
changes in the environment because the policy is determined
ahead of time. Also, the state space of many problems is too
large to adequately represent as a finite set of enumerable
states. Comparing with offline methods, online methods ad-
dress the shortcomings of offline methods by only planning for
the current state and a small number of possible plans with
longer online computation time. Since online algorithms do
not plan for the whole state space, discrete MDP formulations
are not required. Online algorithms are also able to account for
changes in the environment because they are executed once
at each decision point, allowing for updates between these
points. There is also Partially Observable MDP (POMDP)
formulation for this problem, which aims to account for
the state uncertainty due to the sensor noise [58], where
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the authors use an online search algorithm to solve this
POMDP. The major difference with this paper is that they
use depth-first, branch-and-bound search and do not consider
the state transition uncertainty, while the MCTS algorithm is
robust to the dynamical model uncertainty through balancing
exploration and exploitation.

C. Contributions

In this paper, we propose an algorithm which is an extension
of previous work [50], where the authors formulate the com-
putational guidance problem with collision avoidance function
as a Markov Decision Process (MDP) and solve this MDP
using the Monte Carlo Tree Search (MCTS) Algorithm. The
contributions of this paper are:

1) This paper proposed a computational guidance algorithm
that performs consistently better than the baseline algo-
rithm ORCA [54] under high-density air traffic scenarios
with uncertainty, achieving the new state-of-the-art.

2) The algorithm used in this paper is a variation of
the MCTS-UCT algorithm. We truncate the tree search
process and use a heuristic value function to denote the
value of the intermediate node during the search process,
which improves the computation efficiency of the online
algorithm.

3) Comparing with previous works that focus on one vs.
one collision avoidance (one ownship vs. one intruder
aircraft), in this paper, we show the proposed algorithm
provides a framework to handle an arbitrary number of
intruders, and present the numerical simulation results
up to 80 intruders. This provides the necessary step
to make the computational guidance algorithm more
practical.

4) Besides, the proposed algorithm is the foundation and
building block for the more general case of multiple
cooperative aircraft.

The structure of the paper is as follows: in Section II, the
background of MDP and MCTS will be introduced. In Section
III, the description of the problem and its mathematical formu-
lation of MDP are presented. Section IV presents the designed
MCTS algorithm to solve this problem and a brief description
of applying the ORCA method to solve this collision avoidance
problem. The numerical experiment and results are shown in
Section V. Section VI is the conclusion.

II. BACKGROUND

In this section, we briefly review the background of the
Markov Decision Process and Monte Carlo Tree Search.

A. Markov Decision Process (MDP)

Since the 1950s, MDPs [59] have been well studied and
applied to a wide area of disciplines [60]–[62], including
robotics [63], [64], automatic control [65], economics, and
manufacturing. In a MDP, the agent may choose any action
a that is available based on current state s at each time step.
The process responds at the next time step by moving into a

new state s′ with certain transition probability and gives the
agent a corresponding reward r.

More precisely, the Markov Decision Process (MDP) in-
cludes the following components:

1) The state space S which consists of all the possible
states.

2) The action space A which consists of all the actions that
the agent can take.

3) Transition function T (st+1|st, at) which describes the
probability of arriving at state st+1, given the current
state st and action at.

4) The reward function R(st, at, st+1) which decides the
immediate reward (or expected immediate reward) re-
ceived after transitioning from state s to state s′, due
to action a. In general, the reward will depend on the
current state, current action, and the next state. However,
the reward function may only depend on the current state
st, which will be the case in this paper.

In a MDP problem, a policy π is a mapping from the state
to one specific action (known as deterministic policy)

π : S → A

The goal of MDP is to find an optimal policy π∗ that,
if followed from any initial state, maximizes the expected
cumulative immediate rewards:

π∗ = argmax
π

E[
T∑
t=0

R(st, at)|π] (1)

B. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a method for finding
optimal decisions in a given domain by taking random samples
in the decision space and building a search tree according to
the results [66], [67]. It has already had a profound impact on
Artificial Intelligence (AI) approaches for domains that can be
represented as trees of sequential decisions, particularly games
and planning problems [68]–[70], including the current state-
of-art computer program AlphaZero in the Game of Go [71].

The basic MCTS process is building a search tree incremen-
tally and asymmetrically. For each iteration of the algorithm, a
tree policy is used to find the most urgent node of the current
tree. The tree policy attempts to balance considerations of
exploration (look in areas that have not been well sampled yet)
and exploitation (look in areas which appear to be promising).
A simulation is then rolled out from the selected node and the
search tree is updated according to the result. This involves
the addition of a child node corresponding to the action taken
from the selected node and an update of the statistics of its
ancestors. Moves are made during this simulation according
to some default policy, which in the simplest case is to make
uniformly random moves. A great benefit of MCTS is that the
values of intermediate states do not have to be evaluated, as
for depth-limited minimax search, which significantly reduces
the amount of domain knowledge required. Only the value of
the terminal state at the end of each simulation is required.
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III. PROBLEM FORMULATION

A. Problem Statement

This paper aims to control an aircraft through a series
of actions so that the aircraft can arrive at its destination
while avoiding potential conflicts with other intruder aircraft
during the flight. This is a sequential decision-making problem
that can be formulated as a MDP problem. In this MDP
problem, the action is decided directly from the state, which
incorporates all the information (the position and velocity of
intruder aircraft, the position of the destination) for the agent
to decide which action is optimal for the corresponding state.

In this paper, a high-density free flight airspace scenario is
considered: one aircraft (the ownship) is equipped with the
MCTS algorithm and will try to avoid the conflicts with other
intruder aircraft. Here the aircraft performance data is based
on Airbus Vahana aircraft [72].

When controlling the aircraft, only horizontal actions are
considered in this paper, which means all the aircraft will be
flying at the same altitude and this problem can be solved
in two dimensions. This assumption makes it possible to
incorporate multiple flight levels to deal with the high-density
air traffic in UAM.

Besides, we also assume the aircraft can get the intruder
aircraft information (position and velocity) through the sensor
perfectly. Future work would include test the performance of
this algorithm under different levels of measurement uncer-
tainties [73], [74].

The objectives for this specific MDP problem are two-fold:
the first is to guide the aircraft to the goal state in a short
time, and the second is to avoid any conflicts between the
controlled aircraft and other intruder aircraft. Therefore, the
reward function should be able to capture both two objectives.

Based on the above description, this problem will be mathe-
matically formulated as a MDP problem in the next subsection.

B. MDP Formulation

1) State Space:: A state includes all the information the
ownship needs for its decision making: the position and
velocity of all the aircraft including ownship and intruders,
together with the goal position. For the intruder aircraft k, we
use (i

(k)
x , i

(k)
y ), (i(k)vx , i

(k)
vy ) to denote its position and velocity.

For the ownship, its position (ox, oy), velocity (ovx, ovy),
speed ov , heading angle oψ , and the bank angle oφ are
included in the state. To sum up, if there are n intruders,
1 ownship, and 1 goal, the current state will be a vector
of length 4 × n + 7 × 1 + 2. Note that the state variables
defined here are continuous. In general, for a MDP with
continuous state variables, it is not clear how to best represent
the policy, since it is impossible to enumerate all possible
state-action mappings. For previous MDP-based algorithms to
solve conflict avoidance problems, some possible approaches
to represent the policy include using a grid-based discretization
of the state space S and the action space A [56], [75] or using
some policy compression techniques [76]. Comparing with
previous methods, the advantage of the MCTS algorithm is
that we do not need to discretize the state space. For each state,

the MCTS algorithm will generate an action for the aircraft to
follow in real-time.

Fig. 2: An example state of the MDP formulation.

Fig. 2 shows an example state of this MDP. This state
includes all the aircraft information in a 24km× 24km map.
It should be noted that the displayed aircraft size in this
figure is not proportional from its size in real world, which
is approximately 6m by 6m [72]. In this figure, the yellow
aircraft is the ownship, the red aircraft are the intruders, and
the green star is the goal position for the ownship.

2) Action Space: At the beginning of each time step (5
seconds), the ownship can choose to change both its bank
angle and acceleration at certain rates.

For the bank angle, the ownship can choose to turn right,
turn left, or go straight. More precisely, the advisory for
the change of bank angle constitutes the action set Aφ =
{−5◦/s, 0◦/s,+5◦/s} where negative corresponds to right
turn and positive to the left turn. For the passenger comfort,
we restrict the bank angle to lie between −25◦ and 25◦. When
the heading angle action leads the bank angle to go beyond
±25◦, the bank angle will be clipped to ±25◦.

For the acceleration, the ownship can choose one acceler-
ation from the action set Aa = {−5m/s2, 0m/s2, 5m/s2}.
Similar to the bank angle, we restrict the speed to be in
between 50m/s and 80m/s [77] following the aircraft per-
formance data of Airbus Vahana [12], [72], [78].

At each time step, the ownship will choose one action
(aφ, aa) ∈ Aφ×Aa and the ownship will maintain the action
during this time step.

It is natural to consider extending the set of actions (conflict
resolution advisories) to include more options than 9. How-
ever, using the MCTS algorithm to calculate the optimal action
will be more time consuming with the extended action space
since the tree size will grow exponentially with the number
of actions. Because computation time is an important factor
for the online algorithm, some techniques can be used for
extending action space in future steps, such as truncated Monte
Carlo search algorithms [79] or using a policy network to
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narrow down the search to high-value actions [68]. In this
paper, we use 3 by 3 action space to keep our scope more
focused.

3) Dynamical Model: Based on the current state and cur-
rent action, the following kinematic model will be used to
compute state transition for ownship:

ȯv = aa + εv̇

ȯφ = aφ + εφ̇

ȯψ =
g tan oφ
ov

ȯx = ov cos oψ

ȯy = ov sin oψ

(2)

where aa is the acceleration and aφ is the changing rate of
bank angle.

After the aircraft execute an advisory, a normally distributed
noise εφ̇ with a standard deviation of 4◦ will be added to the
bank angle, and a normally distributed noise εv̇ with a standard
deviation of 2m/s will be added to the speed. Similarly for the
intruder aircraft, a normally distributed noise with a standard
deviation of 10m will be added to its position at each time
step. The noises here aim to account for the uncertainties in
the environment and aircraft dynamics.

4) Terminal State: For the consideration of safety, the
conflict is defined to be when the distance of two aircraft is less
than a minimum separation distance rmin = 0.3 nautical miles
[80]. This separation standard was chosen using the definition
of well clear for Unmanned Aircraft Systems (UAS) according
to Cook and Brooks [81]. For large UAS in high-altitude
airspace, the Horizontal Miss Distance (HMD) is defined to be
0.66nmi. For small UAS (55lbs vehicle or less) in low-altitude
controlled airspace around airports, the horizontal separation
is set to be a HMD of 0.36nmi. Using those values as a
reference, the nominal spatial separation standards picked for
this UAM application are set to 0.3nmi horizontally. These
are tighter than UAS standards because it is assumed that
enhanced equipage capabilities will be installed onboard UAM
aircraft [80].

Based on the above separation requirements, the terminal
state of this MDP includes the following three different types
of states, which can be determined directly through the state
information.

1) The distance from ownship to any intruder is less than
rmin (referred to as a conflict state in the following);

2) The ownship flies out of the map (referred to as a
boundary state in the following);

3) The ownship reaches the goal position (referred to as a
goal state in the following).

5) Reward Function: The goal in this paper is to make
an aircraft quickly reach its destination and avoid potential
conflict. These two objectives can be captured in the reward
function defined as follows:

R(s) =

{
1, if s is goal state,
0, otherwise.

(3)

With this reward setting, reaching a conflict state or a boundary
state before the goal state will terminate the whole process

with a reward of 0. Reaching a goal state will terminate
this process with a reward of 1. So when maximizing the
reward, the agent will try to reach the goal state and avoid
conflict states and boundary states. Therefore we do not need
to introduce a penalty for boundary states or conflict states.

IV. SOLUTION METHOD

In this section, we will introduce our proposed solution
approach and the baseline method. We will describe how to
apply these methods to solve the formulated problem.

A. MCTS Algorithm

For the MDP formulated above, the most popular algorithm
in the MCTS family, the Upper Confidence Bound for Trees
(UCT) [82], is used to solve this problem. UCT has some
promising properties: it is very efficient and guaranteed to be
within a constant factor of the best possible bound on the
growth of regret (the regret is the expected loss due to not
selecting the best action), and it can balance exploration and
exploitation very well [82].

In the MCTS algorithm, the nodes in the search tree denote
the states in the state space of the MDP problem formulated
in Section III. In the remaining part of this paper, the state
and the node will be used interchangeably. The child nodes of
a node are all the possible next states (nodes) resulting from
different actions from the current state (node). Since there are
nine actions in the action space at each time step, each node
will have at most nine child nodes by executing these nine
different actions.

MCTS algorithm selects actions by lookahead search. Each
edge (s, a) of the search tree stores an action value Q(s, a)
and its visit count N(s, a). The tree is traversed by simulation,
starting from the root state, which is the current state we are
considering.

In selection step, the ownship will select a child node with
maximum value in Equation (4), so as to maximize the mean
action value Xj plus a uncertainty bonus:

UCT = Xj + 2C

√
2 lnn

nj
(4)

Here the first term Xj is referred as exploitation term, which
is directly from the formula

Xj = Qj/nj (5)

where the number nj is the times the child node j has been
visited before and the value Qj is the total reward of all
playouts that passed through this child node (so that Qj/nj is
an approximation of the child node’s state-action value). The
second term 2C

√
2 lnn/nj is referred as an exploration term

where n is the number of times the current (parent) node has
been visited, and C is a constant to balance the exploration and
exploitation. A higher C value will emphasize exploration and
a lower C value will encourage exploitation. It should be noted
that the value of C depends on the value scale of Xj . Since
the value of C = 1/

√
2 was shown by Kocsis and Szepesvari

to satisfy the Hoeffding inequality with rewards in the range



6

[0, 1] [83], it is reasonable to set C = 1/
√
2 in this paper.

With a reward range different than [0, 1], a different value of
C may be needed.

If more than one child node has the same maximal value,
the tie is broken randomly [83]. It is generally understood that
nj = 0 yields a UCT value of ∞, so that if a node is never
visited previously, it will be assigned to the largest possible
value, to ensure that every child will be considered at least
once before any expansion [67]. This is the strategy used in
this paper.

The second step for the UCT algorithm is expansion, which
happens when the ownship is at a new node which it has never
visited before. This step is adding this new node to the current
tree under its parent node (the previous state), and setting its
visiting number to 1 and cumulative reward to 0.

The third step is roll out, which aims to estimate the value
for the newly added state in the expansion state. After a new
node is added to the tree, its value will be determined by
running a simulation to a terminal state following a random
policy, until reaching a terminal state with a final reward. It
should be noted that simulating to a terminal state usually
requires many steps, which is time-consuming, and we will
address this limitation of the MCTS algorithm in the next
subsection “Estimated Value Function”.

After an action is selected, the next state for the ownship
and intruder aircraft will be updated based on the dynamical
model in Equation (2).

The final step of MCTS is backpropagation. After simulat-
ing the whole process to a terminal state, the final reward and
visit count of all traversed edges are updated. Each traversed
edge accumulates the reward and increases the visit count by
1, and we can get the mean state-action value from the total
reward and visit count.

One iteration of the above four steps is called one sim-
ulation. If the computation budget allows (e.g., the decision
needs to be made in 100ms), sufficient simulations will be
repeated, which can provide a good approximation for the
values of different nodes. When the simulation stops and a
decision needs to be made, the most promising node will be
selected by performing exploitation (set C = 0 in Equation
(4)).

Estimated Value Function: One concern for the proposed
algorithm is that the ownship may not have sufficient time
to run this algorithm, since the algorithm presented in this
paper is an online algorithm, which means it is vital for
the ownship to compute quickly to make decisions. Since
simulating this process to a terminal state usually needs many
steps, simulating this process to a fixed search depth d is
beneficial to reduce computation time in the roll out step.
More specifically, if the algorithm simulates to a fixed search
depth d and reaches a non-terminal state, the agent will
use the estimated value function as the terminal reward and
backpropagate this reward information. An example of the
building of the state-action decision tree is given in Fig. 3,
where the search depth is fixed at 2. For the estimated value
function, intuitively, if at a state where the ownship is close to
the goal state, this state should be a better state without any
other information, so the following estimated value function

Fig. 3: Illustration of the state-action tree built in the MCTS
algorithm with search depth 2. For illustration purposes, we
only consider three actions in this case: turn left, turn right, and
go straight. Here red node denotes the conflict state; the green
node denotes the goal state. Yellow nodes mean that the agent
simulates to depth two and uses the estimated value function
as the final reward for the non-terminal state, depending on the
distance between ownship and goal position. The state-action
value of each node at time step t + 1 is the average of all
its child node values. Based on this illustration, the agent will
select to turn right at the current state st.

is used for the non-terminal states, so that the ownship can
judge the goodness of any non-terminal state:

Ṽ (s) = 1− d(o, g)

max d(o, g)
, if s is non-terminal state (6)

where d(o, g) denotes the distance from ownship to goal
position. max d(o, g) is the maximum distance from ownship
to the goal state, which is the diagonal distance of the map
(if the map has an irregular convex shape, we can use the
diameter of this convex shape). In this way, if there is no
conflict with intruder aircraft or the border (which has reward
0), the ownship will get a positive reward between 0 and 1,
depending on how far the ownship is from the goal state.

The above procedure is summarized in Algorithm 1. In this
pseudo code, we use v to denote the node and s to denote
the state information of node v. s(v) means the state of a
node and v(s) means the node created from state s. Q(v) is
the total reward of all playouts that passed through the node
v and N(v) is the times the node v has been visited before.
d(v) represents the search depth of the node v.

B. Optimal Reciprocal Collision Avoidance (ORCA) Method

A popular approach to this computational guidance prob-
lem is the Optimal Reciprocal Collision Avoidance (ORCA)
Method [54]. The ORCA method is an efficient computational
algorithm and its safety has been demonstrated in realistic
applications [84], [85]. Similar to our algorithm, the ORCA
method is also a reaction-based method that specifies one-step
action for the current geometric configuration. In this part, we
present how to use the ORCA method to solve this problem
compare its performance with the MCTS algorithm.
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Algorithm 1 MCTS-UCT algorithm

1: function UCTSEARCH(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vl ← TREEPOLICY(v0)
5: reward← DEFAULTPOLICY(s(vl))
6: BACKUP(vl, reward)
7: return a(BESTCHILD(v0, 0))
8:
9: function TREEPOLICY(v)

10: while v is nonterminal and d(v) ≤ d do
11: if v not fully expanded then
12: return EXPAND(v)
13: else
14: v ← BESTCHILD(v, C)

15: return v
16:
17: function EXPAND(v)
18: choose a ∈ untried actions from A(s(v))
19: s(v′) = PROCEED(s(v), a)
20: add the new child v′ to v
21: return v′

22:
23: function BESTCHILD(v, c)
24: return argmax

v′∈children of v

Q(v′)
N(v′) + c

√
2 lnN(v)
N(v′)

25:
26: function DEFAULTPOLICY(s)
27: while s is nonterminal and d(v(s)) ≤ d do
28: choose a ∈ A(s) uniformly at random
29: s← PROCEED(s, a)

30: return reward for state s
31:
32: function BACKUP(v, reward)
33: while v is not null do
34: N(v)← N(v) + 1
35: Q(v)← Q(v) + reward
36: v ← parent of v
37:
38: function PROCEED(s, a)
39: s′ ← next state from current s, a
40: d(v(s′))← d(v(s)) + 1
41: return s′

The basic idea of ORCA is that, at each time step, the
ownship first decides the conflict-free velocity set with all the
other aircraft for at least a preset amount of time τ , which
we denote as ORCAτ . Next, the ownship will select its new
velocity as close as possible to its preferred velocity (which
is the velocity point directly to its destination) in the set
ORCAτ .

Since in our problem, we are only controlling one ownship
aircraft. So in contrast to the original ORCA paper [54] where
each agent will take half of the responsibility to remain on a
collision-free trajectory, in this paper we let the ownship take

Fig. 4: Sample area of the aircraft for ORCA algorithm, which
we denote as set S.

the full responsibility when selecting the conflict-free velocity.
Besides, since we are controlling the eVTOL aircraft, the

selected velocities also need to satisfy the dynamic constraint.
Specifically, we restrict the ownship to select the velocity with
speed in the range (v − 5m/s, v + 5m/s) where v is the
current speed of the ownship. One drawback of the ORCA
algorithm is that it always selects the velocity directly and
cannot incorporate the bank angle model in a straightforward
way. So here we restrict the ownship to select velocity in the
10-degree field of view, which means the ownship can change
its heading angle less than 10◦/s. This dynamics constraint is
shown in Fig. 4, where the ownship will select a velocity in
the shaded area, which we denote as set S. In this figure, θ
is 20◦, vmin and vmax are chosen to be v− 5m/s, v+5m/s
where v is the current speed of the ownship. The the ORCA
algorithm becomes the following optimization problem

vnew = argmax
v∈ORCAτ

⋂
S

||v − vpref || (7)

Since we are considering the dynamics constraint which
makes the feasible action space non-convex, the solution
approach using linear programming in the original paper [54]
is not applicable. We solve the above optimization problem
by the following approach. After calculating the set ORCAτ ,
we sample N points uniformly in the set S. Among all the
sampled points, we choose one point in set ORCAτ that is
closest to the preferred velocity, as shown in Equation (7).
However, when the density of air traffic is very high, the
intersection of ORCAτ and S may be empty. In this case,
we will select the “safest possible” velocity for the ownship
among the N sampled points, i.e., the velocity that minimally
“penetrates” the constraints in set ORCAτ .

Here we note the differences between the MCTS algorithm
and the ORCA algorithm. First, the ORCA algorithm can
select any velocity in the shaded area while the MCTS
algorithm can only choose from 9 discrete actions at each
time step. We will show the reduced action space compared to
ORCA does not hurt the performance of the MCTS algorithm.
Second, since the ORCA algorithm does not have a penalty
for the ownship flying out of the map, we allow the ownship
to fly out of the map and then fly back while implementing the
ORCA algorithm. Third, since the original ORCA algorithm
is proposed in the deterministic case and we are introducing
uncertainties in this paper, we increase the conflict radius
of each aircraft to give the ORCA an extra buffer to avoid
conflicts between aircraft.
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V. NUMERICAL EXPERIMENTS

A. Simulator

To test the performance of the proposed algorithm and the
baseline algorithm, an airspace simulator was built in Python
where the aircraft can fly freely in the two-dimensional en
route airspace. The airspace has 24km length and 24km width,
which is designed for future Urban Air Mobility free flight
operations. The assessment of the algorithm involves running
1000 episodes in this simulator and then take the average of
the statistics as the algorithm performance. Here one episode
means the ownship flying from its initial position to a terminal
state.

At the beginning of each episode, the initial position of
ownship is at the bottom right corner of the map, and the
initial speed of the ownship is set to 60m/s, the initial flight
direction is set to point directly to the center of the map. Then
a fixed number of intruder aircraft are generated with speed
uniformly distributed between 50m/s and 80m/s and heading
angle uniformly distributed between 0◦ and 360◦. The goal
position of the ownship is also uniformly generated on the
map.

With the above initialization, after each time step, the state
update for the ownship and the intruder aircraft will be based
on the dynamical model in Equation (2). When an intruder flies
out of the map, a new intruder will be randomly generated in
the airspace so that the number of intruder aircraft is fixed.
When an intruder aircraft is generated, we prevent it being too
close to the ownship, in which case the ownship might not be
able to avoid this intruder no matter what action it takes.

During the simulation, the total number of conflicts between
the ownship and intruder aircraft will be recorded. When the
ownship reaches the goal state or flies out of the map or
has a near mid-air collision with any intruder aircraft, this
episode will end and a new episode will start. The near mid-
air collision (NMAC) standard is defined to be 500 feet by the
Aeronautical Information Manual [86]. Note in this simulator,
when a conflict happens, we do not terminate this episode but
just record this conflict. This is because in a conflict state, the
MCTS algorithm can still work to guide ownship escaping this
conflict and avoid potential NMAC.

We also note that there is an airspace simulator from
NASA named Fe3 (Flexible engine for Fast-time evaluation of
Flight environments). It was used to test the performance of
different low-altitude high-density air traffic operations [87]–
[89]. In their simulator, the goal position and origin are on
the boundary of the map. This simulator is more suitable for
the case where big airspace was divided into several small
sectors and we only need to control aircraft in one small sector
to guarantee there is no conflict between aircraft. When the
aircraft exit the current sector and move into the next sector,
another controller will take over this aircraft. For the simulator
used in this paper, it can be used in a scenario where bounded
airspace contains both static obstacles (walls or geofences) and
dynamic obstacles (intruders or birds), such as airspace above
a small city. In this case, the goal position and origin will be
in the same airspace region.

B. Results with fixed velocity intruders
In the following experiments, we run 1000 episodes in the

simulator for each algorithm with different parameter settings,
where we keep the velocity of the intruder aircraft fixed. We
record and compare the percentage of these 1000 episodes
where the ownship reaches the goal state successfully, the
percentage of episode termination due to a NMAC, average
conflicts in each episode, and average running time for each
decision making step.

1) Performance of MCTS algorithm with different param-
eters: In the MCTS algorithm, there are two parameters that
are important to the performance of this algorithm: the number
of simulations n that each time a decision needs to be made
and the search depth d, which is discussed in Section IV. In
this experiment, the number of intruders is varied from 10 to
80 with step 10, the number of simulations is varied from 100
to 900 with step 200, and the search depth is chosen from 2,
3, and 4. Based on the results and performance comparison,
the best parameters n and d are chosen to conduct the second
experiment.

Since the performance trend of the MCTS algorithm is
consistent for different numbers of intruder aircraft, in Fig. 5
we only show the result where the number of intruder aircraft
is 80. The figure also includes error bars indicating 95%
confidence interval of the Monte Carlo simulation results.

Fig. 5a, 5c, and 5c show that the search depth d = 2 per-
forms worse than deeper search depths (the ownship reaches
fewer goal states and has more NMACs and conflicts). This
is because when the search depth is deeper, the ownship can
look further into the future and thus can take action to avoid
the conflicts foreseen in the further future. The search depth
d = 3 and d = 4 do not show much difference from the
results. They perform equally well. From Fig. 5a, 5b, and 5c,
we also observe that the number of simulations does not affect
the performance much, which implies that in this problem, the
MCTS algorithm does not need too many simulations to have
an accurate approximation of the action value.

The average running time in Fig. 5d is growing linearly
with the number of simulations and the search depth is also
the main factor slowing down the algorithm because the search
tree is deeper.

Based on the results in Fig. 5, since increasing the search
depth d to 4 and increasing the number of simulations will
increase the computation time while cannot bring much per-
formance improvement, the number of simulations n = 100
and search depth d = 3 were chosen for the next experiment
to compare with ORCA algorithm.

2) Performance of ORCA algorithm with different param-
eters: For the ORCA algorithm, the preset time τ decides
how long the agent can “see” in the future, and the number
of sampling points N decides the optimality of the selected
velocity. In this experiment, we did a stress test (maintain the
number of intruder aircraft as 80) for these two parameters
with different values, by setting τ to 30, 60, 90 and N to 10,
50, 100, 200. The result is shown in Fig. 6.

From Fig. 6 we can see that with a larger number of
sampling points, the performance is better with more reached
goals and fewer conflicts. However, the ORCA algorithm does
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Fig. 5: Performance of MCTS algorithm with different parameters when there is 80 intruder aircraft.
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Fig. 6: Performance of ORCA algorithm with different parameters when there is 80 intruder aircraft.

not show much improvement by increasing N from 100 to
200. Since the computation time is increasing linearly with
N , we choose N to be 100 for the next experiment. Also,
we choose the parameter τ to be 60 since from the result it
performs slightly better than the other two in terms of the
reached goals.

3) Comparison between MCTS, MCTS-Fast, ORCA algo-
rithm: In this experiment, we change the number of intruder
aircraft from 10 to 80 with step 10 and compare the perfor-
mance of the MCTS algorithm and ORCA algorithm, with

the parameter values selected from the above experiments.
Besides, we also examine the performance of the MCTS
algorithm in an extreme case where the decision time is very
short. In this extreme case, we only allow the MCTS to run 10
simulations to build the search tree and then select an action.
We call this variant of the MCTS algorithm “MCTS-Fast”.
We generate 1000 same episodes for the three algorithms and
Fig. 7 shows the performance results of algorithm MCTS,
MCTS-Fast, and ORCA.

The three algorithms in Fig. 7 show similar patterns: with
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Fig. 7: Performance of MCTS, ORCA, MCTS-Fast with different number of intruder aircraft.

the increasing number of intruders, the number of conflicts
and probability of having a NMAC are both increasing, and
the probability of reaching the goal state is decreasing. For
all three algorithms, the ownship can reach the goal state
with more than 90% in the 1000 episodes, and the average
conflicts in each episode are under 0.6, which means all three
algorithms are very effective at avoiding potential collisions. In
addition, when the intruder number is below a certain threshold
(approximately under 40), the ORCA and MCTS algorithms
can help the ownship reach goal state without encountering
any NMAC for more than 99% of the time. Also, with a
limited computation time, the MCTS-Fast algorithm shows a
little performance loss, demonstrating the robustness of the
MCTS algorithm.

As shown in Fig. 7b and Fig. 7c, in terms of the percentage
of NMAC episodes and the number of average conflicts, the
MCTS algorithm performs better than the ORCA algorithm,
especially when the intruder aircraft number is large (air traffic
density is high).

Figure 7d shows that the computation time of all three
algorithms is growing linearly with the increasing number
of intruder aircraft. On average, the MCTS algorithm needs
around 50ms to 60ms to generate the output action (the run-
ning time under 100ms is acceptable for a real-time decision-
making system, given that the decision is made every 5
seconds), while the ORCA algorithm only needs 2ms to finish

TABLE I: Performance of the baseline

NMAC probability 51.26%± 0.98%

Goal probability 48.74%± 0.98%

Average conflicts 1.92± 0.05

the computation. This shows that the improved performance of
the MCTS algorithm comes at the price of longer computation
time.

In Table 1 we show the result of the baseline where no
actions are taken for all of the aircraft (e.g., the aircraft
is flying straight towards its goal), and plot the average
result over 1000 independent experiments. From this table
we can see when no actions are taken, the ownship will
have a NMAC event over 50% episodes. In each episode,
the ownship has 2 conflicts with other aircraft on average.
This baseline results show the promising performance of the
proposed computational guidance algorithm under a high-
density air traffic scenario.

C. Results with varying velocity intruders

To understand the performance of the MCTS algorithm in
more realistic scenarios, in this subsection, we also conduct
a numerical experiment with the intruder aircraft that vary
velocities stochastically. This more complicated scenario aims
to show that the MCTS algorithm is able to adapt to different
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Fig. 8: A scenario with intruder aircraft that change heading
stochastically.

behaviors of the intruder aircraft, which is useful when the
flight intention information is not available to the ownship.

In this experiment, the intruder aircraft is following the
dynamical model described in Equation (2). At each time
step, there is 10% probability that the intruder aircraft will
change its bank angle at a rate uniformly distributed in the
range [−20◦/s, 20◦/s]. Fig. 8 plots the resulting trajectory for
this case study, where the trail behind each aircraft represents
its historical trajectory.

To incorporate the trajectories uncertainties of the intruder
aircraft, in the MCTS algorithm we implemented forward
projection to predict the near future position of the intruder
aircraft based on its current position and velocity. We also
highlighted other alternative trajectory prediction algorithms
[90]–[94], and we expect the performance of the MCTS
could be improved with a more accurate trajectory prediction
algorithm.

The numerical experiment results over 1,000 random
episodes for this scenario are shown in Fig. 9, which record
the average number of conflicts/NMACs in each episode.
The figure also includes error bars indicating 95% confidence
interval of the simulation results. We can see the due to
the trajectory uncertainty of the intruder aircraft, the average
number of conflicts/NMACs is larger compared to scenarios
with fixed velocity intruders. But the statistics are still at a low
level, which shows the MCTS algorithm is robust to different
behavior patterns of the intruder aircraft. Note the experiment
result variance in Fig. 9b is larger than the variance in Fig. 9a,
since the NMAC event is rarer in the numerical experiment.

D. Discussions

Through the numerical simulation results presented above,
we can see that with a longer online computation time, the
MCTS algorithm performs better than the ORCA algorithm in
terms of the number of conflicts/NMACs. The reason is that
at each time step, ORCA selects an action that is only based

on the current state without considering the action for the next
state. While the MCTS algorithm can look ahead for 3 steps
(search depth is 3). When there are 9 actions to choose at each
time step, the ownship can estimate the outcome up to 93 =
729 different action combinations (similar to the illustration
in Fig. 3, where the ownship can explore 7 different action
combinations with search depth 2). With a deeper search depth
than the ORCA algorithm, the solution of the MCTS algorithm
is closer to the global optimum.

One limitation in this work is that we assume full ob-
servability, where the ownship can sense the intruder aircraft
information (position and velocity) perfectly. However, in
practice when the state information becomes imperfect, some
techniques such as Kalman Filter or Partially Observable MDP
will be necessary to filter out the sensor noise.

We also observe another limitation of the MCTS algorithm
through the numerical experiment. In Fig. 10, we plot the
resulted trajectories by following the actions from the MCTS
algorithm and ORCA algorithm when there is no intruder
aircraft blocking the way to the goal position. In this case,
the ORCA algorithm can select a velocity pointing directly
to the goal position since the action space for the ORCA
algorithm is continuous (the shaded area in Fig. 4). MCTS
algorithm only has 3 fixed turning rate of bank angle, which
makes it difficult to point directly to the goal position. This
will make the ownship keep changing the heading angle when
approaching the goal with extra fuel cost.

VI. CONCLUSION

A shift from human-centric air traffic control systems to-
wards higher levels of autonomy is required to enable safe
and efficient Urban Air Mobility operations. In this paper, we
proposed a computational guidance algorithm with collision
avoidance capability for autonomous free flight operations,
which can guide the eVTOL aircraft to its destination through
controlling the bank angle and acceleration. The problem
is formulated as a Markov Decision Process (MDP) with
uncertainty in aircraft dynamics and the environment. This
MDP is solved by Monte Carlo Tree Search (MCTS) algorithm
with an estimated value function to reduce the computation
time. Numerical experiments in the airspace simulator with
different intruder aircraft behaviors show that our algorithm
has promising performance and outperforms the baseline al-
gorithm Optimal Reciprocal Collision Avoidance (ORCA) in
dense air traffic scenarios. This proposed algorithm provides
a potential solution framework to enable autonomous on-
demand free flight operations in urban air mobility.

The contribution of this research is to provide a state-of-the-
art computational guidance algorithm with collision avoidance
capability. Furthermore, this research integrates the power of
onboard aircraft autonomy and the advantage of the free flight
concept for airspace operations to enable safe and efficient
flight operations in on-demand urban air transportation.
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