
One to Any: Distributed Conflict Resolution with Deep
Multi-Agent Reinforcement Learning and Long Short-Term

Memory

Marc Brittain∗

Iowa State University, Ames, Iowa, 50011, USA

Peng Wei†
George Washington University, Washington, D.C., 20052, USA

A novel deep multi-agent reinforcement learning framework is proposed to identify and
resolve conflicts between a variable number of aircraft in a high-density, stochastic, and dy-
namic en route airspace sector. With a growing demand in air transportation, ensuring these
dynamic systems are both safe and efficient is essential. Air traffic is becoming denser and
more complex, not only in traditional airspace, but also in low altitude airspace. Therefore, we
need an autonomous air traffic control system to ensure safe separation requirements in these
environments. We propose a Deep Distributed Multi-Agent Variable framework (D2MAV)
that utilizes an actor-critic algorithm, Proximal Policy Optimization (PPO) that incorporates
a Long Short-Term Memory (LSTM) network to encode a variable number of aircraft states
into a fixed length vector. This allows the agents to have access to all aircraft information in
the sector in a scalable, efficient way to achieve high traffic throughput under uncertainty. We
train the agents using a centralized learning, decentralized execution scheme where one neural
network is learned and shared by all agents in the environment. We evaluate our framework
via simulation in the BlueSky air traffic control environment.

I. Introduction

A. Motivation
To guarantee air traffic control (ATC) safety and efficiency, with the fast global air traffic growth and expected

high density air traffic is a critical challenge. The tactical decisions being made today by human air traffic controllers
have experienced little change in en route sectors over the past 50 years [1]. The Advanced Airspace Concept (AAC),
developed by Heinz Erzberger and his NASA colleagues, laid the foundation for autonomous air traffic control by
developing tools such as the Autoresolver and TSAFE to augment human controllers for increased airspace capacity and
operation safety in conflict resolution [2–4]. Inspired by Erzberger, we believe that a fully automated ATC system is
the ultimate solution to handle the high-density, complex, and dynamic air traffic in the future en route and terminal
airspace.

Many recent proposals for low-altitude airspace operations, such as the UAS Traffic Management (UTM) [5],
U-space [6], and urban air mobility [7], require an autonomous air traffic control system to provide advisories or alerts to
these intelligent aircraft, facilitate on-board autonomy or human operator decisions, and cope with high-density air traffic,
while maintaining safety and efficiency [7–13]. According to [14], the key to these low-altitude airspace operations is
to design the autonomous ATC with structured airspace to achieve the envisioned high throughput. Therefore, it is
essential to design an autonomous air traffic control system that is able to provide real-time advisories to the aircraft to
ensure safe separation both along air routes and at intersections. Furthermore, we require this autonomous ATC system
to be able to manage multiple intersections and handle uncertainty in a tactical manner.

Designing such a system is a critical challenge. We need a model to comprehend the current air traffic situation to
provide advisories to the aircraft in an efficient and scalable approach, without sacrificing any important information
from the environment. One promising way to solve this problem is through reinforcement learning. The goal of
reinforcement learning is to allow an agent to learn an optimal policy through interaction with an environment. The

∗Ph.D. Candidate, Department of Aerospace Engineering.
†Assistant Professor, Department of Mechanical and Aerospace Engineering, AIAA Senior Member.

1

agent first perceives the state of the environment, selects an action based on the perceived state, and receives a reward
based on this perceived state and action. By formulating the tasks of human air traffic controllers as a reinforcement
learning problem, we can obtain dynamic real-time conflict resolution advisories to the aircraft with little computation
overhead.

Artificial intelligence (AI) algorithms are achieving performance beyond humans in many real-world applications
today. AlphaStar, an AI agent built by DeepMind in 2019, is able to defeat the world’s top professionals in StarCraft II,
which is a highly complex and strategic game [15]. This notable advance in the AI field demonstrated the theoretical
foundation and computational capability to potentially augment and facilitate human tasks with intelligent agents and AI
technologies. However, to utilize such techniques, we need a fast-time simulator to allow the agent to interact with. In
our work, we use the BlueSky air traffic control simulator [16] as our environment for performance evaluation of our
proposed framework.

In this paper, a deep multi-agent reinforcement learning framework is proposed to enable autonomous air traffic
separation in en route airspace to mitigate conflicts, where each aircraft is represented by an agent. Our framework is
able to handle a variable number of aircraft in the sector and does not scale with the number of intersections. To do
this, we use Long Short Term Memory (LSTM) networks [17] to encode information about the environment into a
fixed length vector. This provides critical information about the environment without having to select which aircraft to
consider. Our proposed framework provides a promising potential solution to enable an autonomous air traffic control
system.

B. Related Work
Ground transportation research has already explored the use of deep reinforcement learning in the form of traffic

light control [18, 19]. These approaches place the agent at the intersection and allow the agent to control the traffic lights
in manner that reduces delay. Our problem is similar to ground transportation in the sense we want to provide speed
advisories to aircraft to avoid conflict, in the same way a traffic light advises cars to stop and go. The main difference
with our problem is that we need to control the speed of each aircraft to ensure there is no along-route conflict. In our
work, we represent each aircraft as an agent instead of the intersection to handle along route and intersection conflicts.

There have been many important contributions to the topic of autonomous air traffic control. One of the most
promising and well-known lines of work is the Autoresolver designed and developed by Heinz Erzberger and his NASA
colleagues [2–4]. It employs an iterative approach, sequentially computing and evaluating candidate trajectories, until a
trajectory is found that satisfies all resolution conditions. The candidate trajectory is then output by the algorithm as
the conflict resolution trajectory. The Autoresolver is a physics-based approach that involves separate components of
conflict detection and conflict resolution. It has been tested in various large-scale simulation scenarios with promising
performance.

Strategies for increasing throughput of aircraft while minimizing delay in high-density sectors are currently being
designed and implemented by NASA. These works include the TrafficManagement Advisor (TMA) [20] or Traffic Based
Flow Management (TBFM), a central component of ATD-1 [21]. In this approach, a centralized planner determines
conflict-free time slots for the aircraft to ensure separation requirements are maintained at the metering fix. The main
difference with our work is that we are dealing with multiple intersections instead of merging points, so the aircraft
maintain their route and do not change at the intersections. The second difference is that our method is a decentralized
framework that can handle uncertainty. In TMA or TBFM, once the arrival sequence is determined and the aircraft
are within the “freeze horizon” no deviation from the sequence is allowed, which could be problematic if one aircraft
becomes uncooperative.

Conflict resolution techniques have also been investigated by multi-agent approaches [22, 23]. In this line of work,
negotiation techniques are introduced to resolve identified conflicts in the sector. In our research, we do not impose
any negotiation techniques, but leave it to the agents to learn negotiation techniques through learning and training. In
previous work, we show that a decentralized formulation is able to resolve conflicts at an intersection, but this formulation
only holds when the agent has access to the state information of the N-closest agents. Where the hyper-parameter N
needs to be selected and tuned through experimentation, which limits the transferability of the network architecture to
new environments. In our research, we allow the agent to have access to all aircraft state information and use an LSTM
to encode the information into a fixed length vector to handle a variable number of agents.

Challenging games such as Go, Atari, Warcraft, and most recently Starcraft II have been played by AI agents with
beyond human-level performance [15, 24–26]. These results show that a well-designed, sophisticated AI agent is
capable of learning complex strategies under uncertainty. It was also shown in previous work that a hierarchical deep

2

reinforcement learning agent was able to avoid conflict and choose optimal route combinations for a pair of aircraft [27].
Recently, the field of multi-agent collision avoidance has seen much success in using a decentralized framework in

ground robots [28, 29]. In this work, the authors develop an extension to the policy-based learning algorithm (GA3C)
that proves to be efficient in learning complex interactions between many agents. We find that the field of collision
avoidance can be adapted to conflict resolution by considering larger separation requirements, so our framework is
inspired by the ideas set forth by [29].

In this paper, the deep multi-agent reinforcement learning framework is developed to solve the separation problem
for a variable number of aircraft for autonomous air traffic control in en route dynamic airspace, where we avoid the
computationally expensive forward integration method by learning a policy that can be quickly queried. The results
show that our framework has very promising performance.

The structure of this paper is as follows: in Section II, the background of reinforcement learning, policy based
learning, and multi-agent reinforcement learning will be introduced. In Section III, the description of the problem
and its mathematical formulation of deep multi-agent reinforcement learning are presented. Section IV presents our
designed deep multi-agent reinforcement learning framework to solve this problem. The numerical experiments and
results are shown in Section V, and Section VI concludes this paper.

II. Background

A. Reinforcement Learning
Reinforcement learning, a branch of machine learning, is one type of sequential decision making where the objective

is to learn a policy in a given environment with unknown dynamics. A reinforcement learning problem requires an
interactive environment where an agent can select different actions that have an effect. If we let C represent the current
time, then the components that make up a reinforcement learning problem are as follows:
• (- The state space (is a set of all possible states in the environment
• � - The action space � is a set of all actions the agent can select in the environment
• A (BC , 0C) - The reward function determines how much reward the agent is able to acquire for a given (BC , 0C)
transition
• W ∈ [0,1] - A discount factor determines how far in the future to look for rewards. As W → 0, immediate rewards
are emphasized, whereas, when W → 1, future rewards are prioritized.

(contains all information about the environment and each element BC can be considered a snapshot of the environment
at time C. Based on BC , the agent is able to select an action 0C which will effect the environment. The resulting change in
the environment produces an updated state, BC+1 and a reward associated from making the transition from (BC , 0C)→
BC+1. How the state evolves from BC → BC+1 given action 0C is dependent upon the dynamics of the environment, which
is often unknown. The reward function needs to be carefully designed to reflect the objective of the environment.

From this formulation, the agent is able to derive an optimal policy in the environment by maximizing a cumulative
reward function. Let c represent some policy and) represent the total time for a given environment, then the optimal
policy can be defined as follows:

c∗ = arg max
c

� [
)∑
C=0
(A (BC , 0C) |c)] . (1)

By designing the reward function to reflect the objective in the environment, the optimal solution can be obtained by
maximizing the total reward.

B. Policy-Based Learning
Reinforcement learning can be broken down into value-based and policy-based algorithms. In this work, we

consider a policy-based reinforcement learning algorithm as these algorithms are able to learn stochastic policies, unlike
value-based approaches. This is especially beneficial in non-communicating multi-agent environments, where there
is uncertainty in other agent’s actions. Proximal Policy Optimization (PPO) is a recent policy-based algorithm that
uses a neural network to approximate both the policy (actor) and the value (critic) [30]. PPO improved upon previous
approaches such as A3C [31] by limiting the change from the previous policy to the new policy and has been shown to
lead to better performance [30]. If we let AC (\) denote the probability ratio and \ represent the neural network weights
at time C, then:

3

AC (\) =
c\ (0C |BC)
c\>;3 (0C |BC)

. (2)

We can then formulate the PPO loss function for the actor and critic as follows:

! c (\) = �C [min(AC (\) (�), 2;8?(AC (\), 1 − n, 1 + n) (�))] + V · � (c(BC)) (3)

!E = (�)2, (4)

where � := 'C − + (BC) and n is a hyperparameter that determines the bound for AC (\). The second term in (2);
V · � (c(BC)) is used to encourage exploration by discouraging premature convergence to sub-optimal deterministic
policies. Here � is the entropy and the hyperparameter V controls the strength of the entropy regularization term. In (3),
the critic is trained to approximate the future discounted rewards:

'C =

:−1∑
8=0

W8AC+8 + W:+ (BC+:). (5)

C. Multi-Agent Reinforcement Learning
While single agent reinforcement learning considers one agent’s interaction with an environment, multi-agent

reinforcement learning is concerned with a set of agents that share the same environment [32]. Fig. 1 shows the
progression of a multi-agent reinforcement learning problem. Each agent has its own goals that it is trying to achieve in
an environment that may be unknown to the other agents. The difficulty of learning useful policies greatly increases in
these problems since the agents are both interacting with the environment and each other. One strategy for solving
multi-agent environments is Independent Q-learning [33], where other agents are considered part of the environment and
there is no communication between agents. This approach often fails since each agent is operating in the environment
and in return, results in learning instability. This learning instability is caused by the fact that each agent is changing its
own policy and how the agent changes this policy will influence the policy of the other agents [34].

III. Problem Formulation
In en route and terminal sectors, air traffic controllers are responsible for ensuring safe separation among aircraft. In

our research, we used the BlueSky simulator as our environment [16]. We developed three challenging Case Studies with
varying number and orientations of intersections with high-density air traffic to evaluate the performance of D2MAV.

The objective of the Case Studies is to maintain a safe separation between aircraft and resolve conflict for all aircraft
in the sector by providing speed advisories. To obtain the optimal solution in this environment, the agents need to
maintain safe separation and resolve conflict and every time step in the environment. The designed Case Studies are
dynamic, where aircraft enter the sector stochastically, which provides a more difficult challenge for the agents since
they need to develop a strategy instead of simply memorizing actions.

There are many settings we imposed to make the Case Studies feasible. For each simulation run, there is a fixed
max number of aircraft. This is to allow comparable performance between simulation runs and to evaluate the final
performance of the framework. In BlueSky, the performance metrics of each aircraft type impose different constraints
on the range of cruise speeds. We set all aircraft to be the same type, Airbus A320, in these Case Studies. We also
imposed a setting that all aircraft can not deviate from their route.

A. Multi-Agent Reinforcement Learning Formulation
Here we formulate our conflict resolution Case Studies as a deep multi-agent reinforcement learning problem by

representing each aircraft as an agent and define the state space, action space, termination criteria and reward function
for the agents.

1. State Space
The state contains the information an agent needs to make decisions. Since this is a multi-agent environment, we

need to incorporate communication and coordination between the agents. We assume that the position and dynamics
of all intruders are available to each agent. We then process the intruder information, sorted by distance to ownship,

4

(a) Case Study A (b) Case Study B

(c) Case Study C

Fig. 1 Case Studies designed in the BlueSky air traffic control environment.

through an LSTM network to encode all of the intruder’s information into a fixed length vector. This allows the agent
to have access to all intruder information without defining a max number of agents to consider. In other words, this
approach is able to handle variable number of agents in the environment. By using the LSTM network to encode the
intruder information, the LSTM network is trained to know which intruder’s information is most important for the
ownship to decide.

The state information includes distance to the goal, aircraft speed, aircraft acceleration, a route identifier, and the
loss of separation distance, where the position of a given aircraft can be represented as (distance to the goal, route
identifier). The intruder information is first processed through an LSTM network to create a fixed length vector. The
intruder information includes the distance to the goal, aircraft speed, aircraft acceleration, a route identifier, distance
from ownship to intruder, distance from ownship to intersection, and distance from intruder to intersection. Fig. 1 shows
an example of a state in the BlueSky environment. The reason for not including the intersection information in the state
for the ownship is that for a given route, the ownship may encounter many intersections, so the size of the state space
would increase as the number of intersections increases. In addition, an intersection is simply a potential conflict point
between two aircraft, so by leaving this information in the intruder information, we can handle this pairwise information
in a scalable approach.

We also followed the same rules as in Brittain and Wei [23] for which aircraft are allowed to be in the state of the
ownship: the aircraft on a conflicting route must have not reached the intersection and the aircraft must either be on the
same route or on a conflicting route. We can then formulate the state and intruder state information for the agents as
follows:

B>C = (3 (>)goal, E
(>) , 0 (>) , A (>) , 3LOS)

ℎ>C (8) = (3
(8)
goal, E

(8) , 0 (8) , A (8) , 3 (8)> , 3
(>)
int , 3

(8)
int),

where B>C represents the ownship state and ℎ>C (8) represents the 8 intruder information that is available to the ownship at
time C.

5

2. Action Space
Every 12 seconds, radar in en route airspace sends updates about aircraft positions [35], therefore our AI agents

were only allowed to select an action every 12 seconds in simulation time. The actions available were: increase desired
speed (accelerate), decrease desired speed (decelerate), or hold the current speed (no acceleration). The action space for
the agents can be defined as follows:

�C = [0−, 0, 0+],

where 0− is to decelerate (decrease speed), 0 is no acceleration (hold current speed), and 0+ is positive acceleration
(increase speed).

3. Terminal State
The episode terminated when all aircraft had exited the sector (#aircraft = 0).

4. Reward Function
Cooperation was encouraged by defining identical reward functions for all agents. We define a conflict as the

distance between any two aircraft is less than 3 nautical miles (3LOS = 3). The reward needed to be designed to reflect
the goal of this paper: safe separation and conflict resolution. We were able to capture our goals in the following reward
function for the agents:

AC =

−1 if 32> < 3LOS

−U + X · 32> if 32> < 10 and 32> ≥ 3LOS

0 otherwise
,

where 32> is the distance from the ownship to the closest aircraft in nautical miles, and U and X are small, positive
constants to penalize agents as they approach the loss of separation distance. By defining the reward to reflect the
distance to the closest aircraft, this allows the agent to learn to select actions to maintain safe separation requirements.

IV. Solution Approach
We designed and developed a novel deep multi-agent reinforcement learning framework called the Deep Distributed

Multi-Agent Variable framework (D2MAV). In this section, we introduce and describe the framework, then we explain
why this framework is needed to solve the Case Studies.

To formulate this environment as a deep multi-agent reinforcement learning problem, we utilized a centralized
learning with decentralized execution framework with one neural network where the actor and critics share layers of the
same neural network, further reducing the number of trainable parameters. By using one neural network that is shared
by all agents, we can train a model that improves the joint expected return of all agents in the sector, which encourages
cooperation. Our reinforcement learning algorithm is a policy-based approach, PPO, which is shown to perform well
across a range of challenging environments [30]. Fig. 2 shows an illustration of the the neural network architecture.

With this framework, we can implement the neural network’s policy to all aircraft at the beginning of each episode.
Each aircraft then follows this policy until termination. Since the environment is stochastic, we collect the experiences
(state, action, reward, terminal) of five episodes using the same policy to update the neural network. In this formulation,
each agent has identical neural networks, but since they are evolving different states, their actions can be different.

V. Numerical Experiments

A. Environment Setting
We used BlueSky air traffic control simulator to test the performance of the D2MAV framework∗. By design, when

restarting the simulation, all objectives were the same: maintain safe separation and sequencing, resolve conflicts, and
minimize delay. Aircraft initial positions and available speed changes did not change between simulation runs.

There were many different parameters that needed to be tuned and selected. We implemented the PPO concept with
two hidden layers consisting of 256 nodes. The encoding for the intruder aircraft state information consisted of a LSTM

∗Code is available at https://github.com/marcbrittain

6

Fig. 2 Illustration of the neural network architecture for PPO with shared layers between the actor and critic.
The intruder information is first encoded into a fixed length vector by the LSTM layer before being concatenated
to the ownship state information. The concatenated information is then sent through two fully connected layers
(FC) of 256 nodes. The policy and value is then obtained from the output fully connected layer of 4 nodes.

layer with 32 nodes. We used the ReLU activation function for all hidden layers except the LSTM for which we used
tanh. The output of the actor used a softmax activation function and the output of the critic used a linear activation
function. Other key parameter values included: learning rate ;A = 0.0001, W = 0.99, n = 0.2, U = 0.1, X = 0.005,
V = 0.0001, and we used the Adam optimizer for both the actor and critic loss [36].

B. Case Studies
In this work, we developed three challenging Case Studies: A, B, and C as shown in Fig. 1. In our D2MAV

framework, the single neural network is distributed to each aircraft as they enter the sector. Each agent is then able to
select its own desired speed, which greatly increases the complexity of this problem since the agents need to learn how
to cooperate to maintain safe separation requirements.

In each Case Study, aircraft enter the airspace following a uniform inter-arrival distribution from 3 to 6 minutes. This
introduces stochasticity into the environment, which increases the difficulty of the problem. In stochastic environments,
the agents cannot simply memorize actions, they need to learn a strategy. The episode terminated when all aircraft had
exited the sector, so the optimal solution in the Case Studies is to have all aircraft reach their goal. Here a goal is defined
as an aircraft exiting the sector without conflict. It is important to note that the difficulty of the Case Studies is based on
the inter-arrival times of the aircraft. The inter-arrival time controls the density of the airspace, therefore, if the AI
agents develop a strategy based on stochastic inter-arrival times there is no limit on the total number of aircraft to send
through the sector.

C. Algorithm Performance
In this section, we analyze the performance of the D2MAV framework on the Case Studies. We allowed the AI

agents to train for 100k episodes and then evaluated the final policy for 200 episodes. The performance of the agents
during training is shown in Fig. 3. We can see how early on how the agents quickly converge to a sub-optimal policy with
increasing performance throughout training. Training for 100k episodes equates to around 5 days of training using an
NVIDIA Titan Xp (12GB) graphics card, although we suspect that faster training time can be achieved through further
code optimization. We calculate the mean and standard deviation along with the median to evaluate the performance of
the final policy as shown in Table 1. We also include a random baseline agent that always selects an action randomly
following a uniform distribution. The mean score of the random agent is shown in the random column of Table 1.

7

0 20000 40000 60000 80000 100000
Episode

10

15

20

25

30

Go
al

s

Case Study A
Case Study B
Case Study C

Fig. 3 Performance of the D2MAV framework during training. Results are smoothed with a 200-episode
rolling average for clarity.

Table 1 Performance of the policy tested for 200 episodes.

Case Study Mean Median Random
A 30.0 ± 0.0 30.0 12.19 ± 2.832
B 29.25 ± 1.190 30.0 19.74 ± 3.318
C 25.88 ± 2.761 26.0 12.73 ± 3.012

We can see from Table 1 that we obtained near optimal scores on all case studies throughout the 200 episode
evaluation phase. This equates to resolving conflict 100%, 98%, and 86% of the time, respectively, for Case Study A, B,
and C, both at the intersections and along route. Given that this is a stochastic environment, we speculate that there
could be cases where there is an orientation of the aircraft where the 3 nautical mile loss of separation distance can not
be achieved, and in such cases we would alert a human ATC to resolve this type of conflict. The median score removes
any outliers from our testing phase, and we can see the median score is optimal for Case study A and Case Study B. In
comparison with the baseline random agent, we can see that our D2MAV framework was able to achieve a significantly
better score than that of the random agent.

While encoding the agents based on distance to the ownship through an LSTM is a promising approach, we suspect
that important information may be lost for aircraft that are far from the ownship. One approach to handle this problem is
to change the way the intruder information is sorted before processing it through the LSTM. For example, the intruder
information could be sorted based on the expected time to the intersection. We leave it to future work to investigate and
resolve these types of encounters.

VI. Conclusion
A novel deep multi-agent reinforcement learning framework is proposed to separate en route aircraft as a core

component in an autonomous air traffic control system in a structured en route sector. We formulate three Case Studies
as deep reinforcement learning problems with the action of selecting a desired speed. We then solve the problem using
the D2MAV framework, which is shown to be capable of solving distributed sequential decision making problems with
variable number of agents and uncertainties.

8

According to our knowledge, the major contribution of this research is that we are the first research group to
investigate the feasibility and performance of autonomous aircraft separation with a deep multi-agent reinforcement
learning framework that incorporates Long Short Term Memory networks to handle variable scalability to enable an
automated, safe and efficient en route sector. The promising results from our numerical experiments encourage us to
conduct future work on improving the efficiency of learning in complex environments.

Acknowledgements
This research is partially funded by the National Science Foundation under Award No. 1718420, NASA Iowa Space

Grant under Award No. NNX16AL88H, and the NVIDIA GPU Grant program.

References
[1] Council, N. R., et al., Autonomy research for civil aviation: toward a new era of flight, National Academies Press, 2014.

[2] Erzberger, H., “Automated conflict resolution for air traffic control,” 2005.

[3] Farley, T., and Erzberger, H., “Fast-time simulation evaluation of a conflict resolution algorithm under high air traffic demand,”
7th USA/Europe ATM 2007 R&D Seminar, 2007.

[4] Erzberger, H., and Heere, K., “Algorithm and operational concept for resolving short-range conflicts,” Proceedings of the
Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 224, No. 2, 2010, pp. 225–243.

[5] Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., and Robinson, J. E., “Unmanned aircraft system traffic management
(UTM) concept of operations,” 2016.

[6] Undertaking, S. J., “U-space Blueprint,” SESAR Joint Undertaking. Accessed September, Vol. 18, 2017.

[7] Mueller, E. R., Kopardekar, P. H., and Goodrich, K. H., “Enabling airspace integration for high-density on-demand mobility
operations,” 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017, p. 3086.

[8] Google, “Google UAS Airspace System Overview,” , 2017. URL https://utm.arc.nasa.gov/docs/
GoogleUASAirspaceSystemOverview5pager[1].pdf.

[9] Air, A. P., “Revising the airspace model for the safe integration of small unmanned aircraft systems,” Amazon Prime Air, 2015.

[10] Kopardekar, P. H., “Safely Enabling Civilian Unmanned Aerial System (UAS) Operations In Low-Altitude Airspace By
Unmanned Aerial System Traffic Management (UTM),” 2015.

[11] Balakrishnan, K., Polastre, J., Mooberry, J., Golding, R., and Sachs, P., “Blueprint for the sky,” The roadmap for the safe
integration of autonomous aircraft. Airbus A, Vol. 3, 2018.

[12] Holden, J., and Goel, N., “Fast-forwarding to a future of on-demand urban air transportation,” San Francisco, CA, 2016.

[13] Uber, “Uber Elevate - The Future of Urban Air Transport,” , 2018. URL https://www.uber.com/info/elevate.

[14] Hunter, G., and Wei, P., “Service-oriented separation assurance for small UAS traffic management,” 2019 Integrated
Communications, Navigation and Surveillance Conference (ICNS), IEEE, 2019, pp. 1–11.

[15] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani, A., Küttler, H., Agapiou, J.,
Schrittwieser, J., et al., “Starcraft ii: A new challenge for reinforcement learning,” arXiv preprint arXiv:1708.04782, 2017.

[16] Hoekstra, J. M., and Ellerbroek, J., “Bluesky atc simulator project: an open data and open source approach,” Proceedings of the
7th International Conference on Research in Air Transportation, FAA/Eurocontrol USA/Europe, 2016, pp. 1–8.

[17] Hochreiter, S., and Schmidhuber, J., “Long short-term memory,” Neural computation, Vol. 9, No. 8, 1997, pp. 1735–1780.

[18] Liang, X., Du, X., Wang, G., and Han, Z., “Deep reinforcement learning for traffic light control in vehicular networks,” arXiv
preprint arXiv:1803.11115, 2018.

[19] Genders, W., and Razavi, S., “Using a deep reinforcement learning agent for traffic signal control,” arXiv preprint
arXiv:1611.01142, 2016.

[20] Erzberger, H., and Itoh, E., “Design principles and algorithms for air traffic arrival scheduling,” 2014.

9

https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf
https://utm.arc.nasa.gov/docs/GoogleUASAirspaceSystemOverview5pager[1].pdf
https://www.uber.com/info/elevate

[21] Baxley, B. T., Johnson, W. C., Scardina, J., and Shay, R. F., “Air Traffic Management Technology Demonstration-1 Concept of
Operations (ATD-1 ConOps), Version 3.0,” 2016.

[22] Wollkind, S., Valasek, J., and Ioerger, T., “Automated conflict resolution for air traffic management using cooperative multiagent
negotiation,” AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004, p. 4992.

[23] Brittain, M., and Wei, P., “Autonomous Separation Assurance in An High-Density En Route Sector: A Deep Multi-Agent
Reinforcement Learning Approach,” 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, pp.
3256–3262.

[24] Amato, C., and Shani, G., “High-level reinforcement learning in strategy games,” Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, International Foundation for Autonomous
Agents and Multiagent Systems, 2010, pp. 75–82.

[25] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M., “Playing atari with deep
reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[26] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al., “Mastering the game of Go with deep neural networks and tree search,” nature, Vol.
529, No. 7587, 2016, p. 484.

[27] Brittain, M., and Wei, P., “Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning,”
Proceedings of the International Conference for Research in Air Transportation, 2018.

[28] Chen, Y. F., Liu, M., Everett, M., and How, J. P., “Decentralized non-communicating multiagent collision avoidance with deep
reinforcement learning,” 2017 IEEE international conference on robotics and automation (ICRA), IEEE, 2017, pp. 285–292.

[29] Everett, M., Chen, Y. F., and How, J. P., “Motion planning among dynamic, decision-making agents with deep reinforcement
learning,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3052–3059.

[30] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[31] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K., “Asynchronous methods
for deep reinforcement learning,” International conference on machine learning, 2016, pp. 1928–1937.

[32] Bu, L., Babu, R., De Schutter, B., et al., “A comprehensive survey of multiagent reinforcement learning,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 38, No. 2, 2008, pp. 156–172.

[33] Tan, M., “Multi-agent reinforcement learning: Independent vs. cooperative agents,” Proceedings of the tenth international
conference on machine learning, 1993, pp. 330–337.

[34] Matignon, L., Laurent, G. J., and Le Fort-Piat, N., “Independent reinforcement learners in cooperative markov games: a survey
regarding coordination problems,” The Knowledge Engineering Review, Vol. 27, No. 1, 2012, pp. 1–31.

[35] Belobaba, P., Odoni, A., and Barnhart, C., The global airline industry, John Wiley & Sons, 2015.

[36] Kingma, D. P., and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

10

	Introduction
	Motivation
	Related Work

	Background
	Reinforcement Learning
	Policy-Based Learning
	Multi-Agent Reinforcement Learning

	Problem Formulation
	Multi-Agent Reinforcement Learning Formulation
	State Space
	Action Space
	Terminal State
	Reward Function

	Solution Approach
	Numerical Experiments
	Environment Setting
	Case Studies
	Algorithm Performance

	Conclusion

