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A novel framework for learning high-fidelity (HF) aerodynamics reconstruction from low-
fidelity (LF) models is proposed to reduce the amount of HF simulations required when op-
timizing aerodynamic designs. The proposed framework leverages conditional generative
adversarial networks (cGANs) to operate directly on images of LF outputs, generalizing our
approach to arbitrary LF mesh sizes. Therefore, our approach can to be applied to more
general problems, without the need to encode the underlying physics information in the neural
networks. The proposed framework is then validated on a benchmark case study; flow past a
backward facing step with varying step heights. Our numerical results show that our proposed
framework can effectively learn the dynamics of the HF model, generating highly accurate HF
model results in only 30 ms.

I. Introduction

High-fidelity (HF) simulations are often the catalyst to enable the design of many complex physical systems. These
HF partial differential equation (PDE) solvers can capture the richness and non-linearities, unlike low-fidelity

(LF) PDE solvers. However, the computational cost of running HF simulations can be very high resulting in long run
times, quickly rendering the analysis of complex systems intractable within short time frames. Therefore, while low
fidelity (LF) PDEs fail to capture the same non-linearities as in the HF PDEs, they are often the choice in early design
analysis due to their quick computation time. This results in faster wall-clock designs, but the resulting design is often
sub-optimal since critical design choices were made on LF simulations.

This problem becomes more prevalent during aerodynamic shape optimization (ASO). In traditional ADO methods,
expensive HF simulations are used to calculate the cost function and constraint values [1–3]. These methods typically
require multiple and repetitive HF model evaluations during the design process. When combined with a large number of
design variables, these problems can become difficult to solve in a reasonable time period.

To reduce this computational cost, metamodeling methods have become increasingly popular [4–9]. Metamodeling
methods can be classified into either data-fit methods [10, 11] or multifidelity methods [12]. Data-fit methods involve
fitting a response surface through the evaluated cost function values at sampled points in the design space. Some
examples of data-fit methods are Kriging [13, 14] and polynomial chaos expansions [15]. To leverage the computational
advantage of LF simulations, multifidelity approaches [6, 7, 13, 16] use information from both the LF and HF simulations
in an attempt to limit the number of HF simulations needed. In these approaches, the fast LF model can be used to
rapidly obtain an initial approximation to the trend function, with further refinement to the true trend function with the
HF model. Examples of such methods include Cokriging [17] and manifold mapping [18].

While multifidelity approaches are able to reduce the number of HF simulations, machine learning and deep neural
networks have been shown to be able to solve complex PDEs, reducing the need to solve time-consuming HF CFD
simulations [19–22]. In these methods, the governing physics equations can be incorporated to the loss function of
the neural network which is shown to be capable of solving simple PDEs and turbulent flow problems, eliminating
the need for further HF simulations. However, when approaching more complex, general problems, hand-encoding
the governing physics equations into neural networks may become challenging and more time-consuming. Recently
in Fukami et al. [23], the authors introduce a super resolution model that is a able to recover HF turbulent flow data
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from LF data, without the need to encode the underlying physics equations. The framework proposed in this article
similarly leverages the general adversarial networks, but instead the model operates directly on an image of the resulting
LF outputs instead of the LF outputs themselves. This allows the proposed framework to be invariant to the space
discretization and can handle non-uniform discretizations which is often the case in ASO.

In the deep learning community, multifidelity approaches have been extensively explored in super image super
resolution (SISR), given the many recent successes with deep convolutional neural networks (CNNs) [24, 25]. In
SISR, the idea is to generate a visually high-resolution output from a low-resolution input. The challenge, however, is
that one low-resolution input can map to many high-resolution solutions. Therefore, there have been many different
methods proposed to overcome this challenge. Traditionally, SISR has been approached from interpolation [26] and
model [27] based methods. More recently, the state-of-the-art of SISR has been achieved by many CNN-based learning
methods[28–39]. These methods are able to achieve visually representative 4x super resolution on input images,
providing a theoretical basis for mapping LF inputs to HF outputs.

While SISR techniques are often applied to pixel up-scaling problems, image-to-image translation is a technique
for learning a mapping between two images that can be of the same size [40]. This technique leverages conditional
adversarial networks to allow the generator to condition on a given input image and has been shown to achieve exceptional
performance in a wide range of applications [40], including single-fidelity flow-field prediction [41, 42].

In this work, a multifidelity conditional adversarial network is proposed, referred to as MFD-cGAN that operates
directly on an image of the resulting LF output as opposed to the output itself. This allows our framework to handle
non-uniform space-discretization which is often the case in ASO. Our framework also incorporates a conditional
adversarial network to improve the performance of the learned HF mapping and does not require hand-encoding the
governing physics equations. The performance of our proposed MFD-cGAN framework is evaluated on an ASO case
study. The next section describes the methodology of our approach. The following section describes the case study
setup along with the preliminary results. Lastly, the conclusions and future work are presented.

II. Methods
In this section, the methodology behind the proposed MFD-cGAN framework is described, including input

preprocessing, the MFD-cGAN generator, and output processing.

A. Input Preprocessing
In computational fluid dynamics (CFD) simulations, the mesh generated is often refined around particular regions of

interest (ROI), while otherwise coarse. This is problematic as CNNs expect matrix inputs. Therefore, the first step in
the MFD-cGAN framework, as illustrated in Fig. 1, is to perform preprocessing on the LF space-discretization model to
convert it into a usable form for the CNN. This can be achieved by mapping the output of LF model, .!� to images in
pixel space.

Images are represented by three channels (i.e., Red, Green, Blue) with varying pixel intensity values in the range
of [0, 255] to produce matrices of the size (# × " × 3), where # is the image height and " is the image width in
pixels. To convert .!� to pixel space, a contour plot of the vector field produced by .!� is first generated as shown in
Fig. 2(a). Then, the output of the contour plot is saved as a gray-scale image file (i.e., .png) to convert .!� to a pixel
space representation as shown in Fig. 2(b).

The intuition behind this approach is further explained. By converting the contour plot to an image file, the domain
is resampled by the number of specified pixels and the range of vector values is mapped to the range of pixel values ([0,
255]). In addition, by specifying the contour image as a gray-scale image, the number of image channels is reduced to
one, resulting in a (# ×") representation of .!� that can be used by CNNs. The pixel representation of .!� is referred

Input	
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MFD-cGAN
Network

Output	
Postprocessing

Fig. 1 Major steps of the proposed MFD-cGAN process.
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(a)
(b)

Fig. 2 LF pressure output from a flow over a backward facing step: (a) .!� contour vector output, and (b)
%!� contour pixel output.

(a)
(b)

Fig. 3 HF pressure output from a flow over a backward facing step: (a) .�� contour vector output, and (b)
%�� contour pixel output.

to as %.!� .

B. MFD-cGAN Generator
In our approach, a conditional adversarial network [43] (cGAN) is introduced to train our network as described in

[40]. By using this formulation, a generator network � and a discriminator network � is introduced. Given the input
%.!� ∈ R#×" and the true output %.�� , the objective is to allow the generator model � learn the optimal weights \� ,
such that � (%.!� ; \�) = .̂ ≈ %.�� . In contrast, the discriminator network attempts to learn a separate set of weights,
\� that can distinguish between .̂ and %.�� . By incorporating the loss of the discriminator network into the loss of
the generator network, the generator network learns how to fool the discriminator network, which can result in better
performance as compared to using pixel-wise loss functions alone.

Both \� and \� are optimized according to their respective loss functions !� and !� . !� is defined as a
combination of a content and adversarial loss component as

!� = !adversarial + _!content, (1)

where _ is a positive constant to weight the content loss component. !content is often chosen to be the mean squared
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Fig. 4 Illustration of the architectures for the generator and discriminator networks.

error (MSE) or the mean absolute error (MAE). Our formulation uses the pixel-wise MAE loss that is formulated as

!content = arg min
\�

|� (%.!� ; \�) − %.�� |. (2)

We found the value of _ = 100 as recommended in [40] to provide good performance. The adversarial component is
included in the total generator loss !� to encourage the network to learn solutions that fool the discriminator network.
The adversarial loss is defined as

!adversarial = − log(1 − � (%.!� , %.�� ; \�)) − log� (%.!� , � (%.!� ; \�); \�) (3)

where � (%.!� , � (%.!� ; \�); \�) represents the probability that the generated image � (%.!� ; \�) is the true image,
%.�� , conditioned on the input image %.!� .

The loss for the discriminator only contains the adversarial component,

!� = − log(1 − � (%.�� ; \�)) − log� (� (%.!� ; \�); \�). (4)

An illustration of the generator and discriminator networks is shown in Fig. 4. The neural network architecture
follows a similar setup as [40], where the generator follows a U-net architecture with skip connections, and the
discriminator follows a PatchGan architecture where # × # patches of the image are classified as real or fake. In [40],
the PatchGan architecture was critical for obtaining highly detailed images and in this study it was also found to lead to
better performance. Each block of the generator encoding consists of a convolution layer, batch normalization, and
a leaky ReLU activation. The decoding block consists of a convolution transpose, batch normalization, dropout (for
first three layers), and a ReLU activation function. There is a total of 8 encoding blocks and 8 decoding blocks in the
generator.

For the discriminator, a block consists of a convolution layer, batch normalization, and a Leaky ReLU activation.
The output is a 30 × 30 patch that is used for classifying a 70 × 70 portion of the image. The average classification over
the patch is true output of the discriminator which determines if the input image is real or fake. Both networks are
optimized with the Adam[44] optimizer with a learning rate of 0.0002. Specific neural network hyperparameters follow
those listed [40].
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C. Output Postproccessing
The final step in the MFD-cGAN framework is to preform the output processing. In this step, a given pixel coordinate

(8, 9) can be mapped to a physical coordinate (G, H) by dividing the physical range by the number of pixels. For example,
given a physical x-coordinate range of (G<8=, G<0G) and an image with a width of F pixels, the physical x coordinate
can be obtained as

G8 =
8 · (G<0G − G<8=)

F
, ∀ 8 ∈ [1, F] . (5)

Similarly, for a given physical variable, E, the variable in the range of pixel values E? can be mapped back to the
physical variable range given the minimum and maximum variable values used during training

E8, 9 = E
?

8, 9
· (E<0G − E<8=) + E<8=, ∀ 8, 9 . (6)

III. Numerical Experiments
In this section, the setup for the case study and neural network training is described, along with our numerical results.

A. Problem Formulation
The case study chosen in this work is the flow past a backward facing step. The domain for this case study is shown

in Fig. 5. The inlet velocity is set to a value of 44.2 </B, while the step height ℎ value is 12.7 2<. The rest of the
domain is scaled based on the dimensions given in Fig. 5. This setup is chosen in order to validate the CFD setup with
experimental data from Driver and Seegmiller [45].

The mesh is generated using blockMesh in OpenFOAM version 5.0 [46]. Mesh !1 (Table 1) is shown in Fig. 6. The
mesh is refined near the upper and lower walls as well as the step to ensure that the first cell thickness is less than a H+
value of one. The grid independent results is shown in Table 1.

OpenFOAM version 5.0 [46] is used as the CFD solver for this work. The Spalart-Allmaras [47] Reynolds averaged
Navier-Stokes (RANS) turbulence model is used along with the steady state simpleFoam solver to simulate the flow past
the backward facing step. The boundary conditions used in this study is shown in Fig. 5. The inlet has a velocity of
44.2 </B, while the outlet is set to a zero-gradient pressure boundary condition. The viscosity (a) of the fluid is set to a
value of 1.56 × 10−5 <2/B. 10−6 is chosen as the convergence criteria for the residuals of both pressure and velocity.
Table 1 gives the simulation time for each of the grids used in the mesh independence study as well as the boundary
layer reattachment length (G'�!) downstream of the step. From Table 1, the reattachment length moves closer to the
experimental value while refining the mesh. In this study, mesh !1 is used as the HF mesh, while mesh !2 is used as
the LF mesh. The step height ℎ is varied between 10.0 2< and 1 < to train the networks.
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50h20h 110h

x = 0

Velocity 
inlet Pressure 

outlet

No-slip wall

No-slip wall

Symmetry
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No-slip wall

Fig. 5 Domain and boundary conditions of the backward facing step.
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Fig. 6 Mesh !1 generated for the backward facing step.

Table 1 Grid convergence study for the validation case.

Mesh No. of cells G'�! Sim time∗, s
L3 7,620 5.97h 12.5
L2 30,730 6.03h 49.3
L1 123,000 6.06h 343.4
L0 408,000 6.29h 2912.5
Exp - 6.26h -

∗Computed on a high-performance cluster with 16 processors.

IV. Numerical Experiments

A. Network Training
To train the networks in the MFD-cGAN framework, 98 LF and HF pressure contour images were collected from the

final time-step of the CFD simulation with varying step heights. The images were then randomly split into 65 training
images, 10 validation images, and 23 testing images. The LF and HF images were (256 × 256) pixels. A similar training
process as described in [40] was followed to train the generator and discriminator networks. Training completes when
the content loss has not reached a new minimum in over 100 epochs, where an epoch is defined as one forward and
backward pass of the network through the entire training dataset. In the training run shown, 603 training epochs were
executed. As shown in Fig. 7(a), the content loss is decreasing and converging to 0, representing similarity between the
generated and real pressure fields. As seen in Fig. 7(b), the total generator loss follows a similar trend as the content
loss, converging to 0. The discriminator loss is shown in Fig. 7(c). For the discriminator, the loss should not approach 0
as that would represent a mode-collapse in the network and deteriorate the generator performance. The loss of the
discriminator should be greater than 0 and stable to ensure that the network is accurately classifying the true images and
falsely classifying the generated images, which is observed in Fig. 7(c). All of the networks were trained on an NVIDIA
RTX 2080 TI GPU and a 16-core AMD Ryzen Threadripper 2950x CPU.

B. Generalization
After training, the generator was evaluated on the 23 testing images to evaluate the performance of the proposed

framework when generalizing to new step heights not present in the training set. Figure 8 shows three different arbitrarily
selected generated images from the testing set with their corresponding input and ground truth image for comparison.
The generated image is shown on the right-most image with the step height provided as well. Interestingly, from visual
inspection all three of the generated images closely resemble the pressure contour of the ground truth (HF) images.
In contrast, it can be seen how the input image contours are vastly different from the ground truth, showing that the
proposed framework is capable of effectively mapping between LF and HF data.

Given that splitting the data into training, validation, and testing was at uniformly selected, 5 different training seeds
were run to capture the mean and standard deviation of performance across runs. Figure 9 shows the mean L1 norm
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Fig. 7 Loss of the MFD-cGAN networks during training: (a) content loss (L1 norm), (b) generator loss, and
(c) discriminator loss.

across the 5 training seeds for (a) LF and HF testing images, and (b) generated and HF testing images. The mean L1
norm is first computed over the testing images before taking a second mean over the training seeds. From Fig. 9(a), it
can be seen that the L1 norm between the LF and HF testing data is very large with the maximum values around the step.
In contrast, in Fig. 9(a) the L1 norm between the generated and HF testing data is very small and hardly identifiable.

In Fig. 10, the maximum average loss (average across the 5 training seeds and testing images) is recorded for each x
and y pixel coordinate. This provides the worst possible error from the viewpoint of each dimension. In Fig. 10(a),
it is observed that around x-coordinate 160, the maximum error is recorded for both the LF and generated image.
x-coordinate 160 is directly to the right of the step. This is in agreement with the L1 error intensity shown in Fig. 9
and it can be seen how the error increases around the step location. Similarly, Fig. 10(b) shows the maximum error
around y-coordinate 220 which is towards the bottom of the image, just below the step (top of the image is y = 0). The
mean of L1 loss (average across the 5 training seeds, the 23 testing images, and the image x,y domain) provides a
scalar comparison between the performance of LF and generated data. For the LF data, the mean of the L1 loss was
68.203 ± 0.169. For the generated data, the mean of the L1 loss was 2.782 ± 0.328, significantly outperforming the LF
data.

In all results shown, it can be seen that the generated data closely resembles the HF data, providing a low-cost
representation of the HF data, given computationally expensive CFD simulations can be avoided. In addition, design
choices made from only LF data can lead to suboptimal and slow-to-converge design optimization. Therefore, by using
the generated data, more useful design choices can be made at each iterations of an ASO design loop, reducing the
number of iterations to obtain an optimal design.
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Fig. 8 Three arbitrarily selected step heights from the testing set with the corresponding LF input image, HF
ground truth image, and generated HF image: (a) ℎ = 0.82, (b) ℎ = 0.08, and (c) ℎ = 0.23.
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Fig. 9 L1 error heat map between: (a) LF and HF data, and (b) generated and HF data. Both images are
shown in the same error scale, illustrating the similarity between the generated and HF data.
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Fig. 10 Mean and standard deviation of the Max L1 error over: (a) x-coordinate domain, and (b) y-coordinate
domain for the 5 different seeds on the testing data.

C. Inference Time
Since our objective is to reduce the overall ASO problem time, the reconstruction time, or inference time of the

generator to reconstruct a HF image is also evaluated. To do this, the generator is queried 1,000 times on a single LF
input and record the mean inference time and standard deviation. The inference time was 30 ± 1.43 <B.

V. Conclusion
In this work, a novel framework for learning high-fidelity (HF) aerodynamics reconstruction from low-fidelity (LF)

models using conditional adversarial networks is proposed. Our approach is able to reduce the overall time for ASO
problems by eliminating the need for running HF simulations when optimizing aerodynamic designs. According to our
knowledge, this is the first investigation the feasibility and performance of using conditional adversarial networks for
multifidelity ASO problems, which is shown to be able to solve complex problems. In future work, the MFD-cGAN
framework will be applied to multifidelity airfoil flow field generation and integrated within ASO design optimization.
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