
1

Scalable Autonomous Separation Assurance with
Heterogeneous Multi-Agent Reinforcement Learning

Marc Brittain, Student Member, IEEE,, and Peng Wei, Member, IEEE,

Abstract—In this article, a scalable autonomous separation
assurance framework is proposed for high-density en route
airspace sectors with heterogeneous aircraft objectives. To handle
the complex dynamic decision making under uncertainty, multi-
agent reinforcement learning is used in a decentralized approach
with each aircraft being represented as an agent. Based on
this, each agent locally solves the separation assurance problem,
allowing the framework to scale to a large number of aircraft.
In addition, each agent has the ability to learn the intention of
the intruder aircraft, which is essential in environments with
heterogeneous agents. Numerical experiments are performed
in a real-time air traffic simulator. The results demonstrate
that the proposed framework is able to effectively ensure the
safe separation of heterogeneous agents, while also optimizing
the intrinsic agent objectives in high-density en route airspace
sectors. In addition, the efficiency of the proposed framework is
demonstrated and shown to provide real-time decision making
for separation assurance.

Note to Practitioners—In commercial aviation, the workload
of human air traffic controllers increases with the growth of air
traffic density. Robust decision making systems to augment hu-
man air traffic controllers allows for increased air traffic without
increased workload, resulting in a safer airspace environment. In
addition, advanced air mobility (AAM) is concerned with low-
altitude airspace operations with both human and autonomous
pilots. In this environment, autonomous real-time separation
assurance systems are required. Most traditional separation
assurance approaches fail to handle stochastic and high-density
environments, rendering them inapplicable to future high-density
traditional airspace and the envisioned low-altitude AAM opera-
tions. Therefore, it is important to study decentralized approaches
that can place the separation assurance problem as an intrinsic
objective of each aircraft to ensure cooperation in high-density
airspace. With this consideration, a scalable, decentralized au-
tonomous separation assurance framework capable of handling
heterogeneous agents is proposed in this article. This framework
is able to perceive the current air traffic environment and select
speed advisories to ensure safe separation requirements, while
balancing intrinsic objectives such as minimizing delay. While
one limitation of multi-agent reinforcement learning is the long
training time, this article demonstrates how the framework also
can leverage modern computing clusters to significantly reduce
training time without sacrificing performance.

Index Terms—Multi-Agent Reinforcement Learning, Separa-
tion Assurance, Air Traffic Management.

M. Brittain is a Ph.D. Candidate in the Department of Aerospace Engineer-
ing, Iowa State University, Ames, IA, 50201, mwb@iastate.edu

P. Wei is an Assistant Professor in the Department of Mechanical and
Aerospace Engineering, George Washington University, Washington, DC,
20052, pwei@gwu.edu

Manuscript received August 17, 2021.

I. INTRODUCTION

W ITH the many recent achievements in artificial intel-
ligence (AI), the airspace of today will look drasti-

cally different in the near future with a mix of human and
autonomous pilots. This presents additional complexities for
today’s air traffic controllers, whose tactical decisions have
only slightly evolved over the past 50 years [1]. In addition,
the proposed future low-altitude operations such as Urban Air
Mobility (UAM) [2], U-Space [3], and UAS Traffic Manage-
ment (UTM) [4] require an autonomous air traffic control
(ATC) system to provide tactical advisories to both human and
autonomous pilots to ensure safe and scalable airspace opera-
tions. In a recent study, it was shown that for these low-altitude
airspace operations, designing the autonomous ATC system
or separation assurance system on structured airspace will be
required to achieve the envisioned high traffic throughput [5].
Based on this, it is worth investigating scalable autonomous
decision support frameworks to ensure safe separation between
aircraft in high-density structured airspace sectors.

A. Related Work

Many techniques for managing airspace intersections and
metering fixes have been designed and implemented by NASA,
including the Traffic Management Advisor (TMA) [6] or Traf-
fic Based Flow Management (TBFM), a central component
of ATD-1 [7]. Conflict free time slots are determined by a
centralized planner to prevent loss of separation (LOS). In
addition, these traditional conflict resolution algorithms are
typically based on optimization or optimal control, where
a centralized controller resolves any conflicts. While these
approaches are effective, it is assumed that all required aircraft
and trajectory information is available to the central controller
at decision time, which does not scale to high-density airspace.
The central controller then generates an entire aircraft trajec-
tory pre-departure or en route (if necessary) that is conflict
free. These approaches include semidefinite programming [8],
nonlinear programming [9], [10], sequential convex program-
ming [11], [12], evolutionary techniques [13], and particle
swarm optimization [14]. However, these approaches become
intractable when handling high-density stochastic airspace
environments due to the centralized architecture.

Collision avoidance provides the last line of defense to
prevent mid air collisions (MAC) between aircraft. The plan-
ning horizon to prevent collisions is only a matter of sec-
onds, whereas separation assurance involves a longer planning
horizon. Markov Decision Processes (MDP) have successfully
been applied to the collision avoidance problem as they

2

allow for the incorporation of a probabilistic model to handle
uncertainties during flight [15]. MDP based methods can be
solved offline during the pre-departure phase [16], [17], [18],
[19], [20] or online during the en route phase [21], [22],
[23]. Generalization becomes problematic for offline methods
since the policy is designed ahead of time. Therefore, any
changes in the environment en route may render the offline
policy sub-optimal. In addition, the state-action space of most
real-world problems is too large to represent in a discrete set
of states, rendering MDP methods intractable for real-time
decision making. Solutions to overcome this limitation have
been proposed, such as grid-based discretization of the state-
action space [24], [19] and policy compression techniques
[25]. Online methods, however, overcome the limitations of
offline planning by considering the current state and possible
actions with more compute time. Since online methods are
considering each state in real-time for decision making, these
methods can adapt to changes in the environment.

While solving MDPs can be challenging, deep reinforce-
ment learning (DRL) is a new approach that combines the
advantages of offline and online methods. DRL approaches
learn an approximate function through offline training that
represents the policy over a continuous state-action space.
This alleviates the need for state-action space discretization
and can scale to large, continuous state spaces. In addition,
querying DRL models is extremely efficient in comparison
to approaches that solve the MDP online [21], [22]. This is
due to the fact DRL methods represent a policy, mapping
the state to possible actions, while also considering long-
term rewards. This provides a one-step strategic decision
based on the current state information, rather than making
assumptions on future possible states. Theoretically, DRL has
been proven effective through challenging games such as Go,
Atari, Warcraft, and most recently Starcraft II with beyond
human-level performance [26], [27], [28], [29]. Starcraft II
is a complex, strategic game where decisions early on have
long-term consequences on the outcome of the game. This
demonstrates the capability of DRL methods and are worth
investigating for autonomous separation assurance.

DRL in air traffic control and conflict resolution was first
introduced in [30], where an AI agent was designed to mitigate
conflicts and minimize the delay of aircraft reaching their
metering fixes. Later, [31] demonstrated that an AI agent
can effectively resolve randomly generated conflict scenar-
ios between a pair of aircraft through vectoring maneuvers.
Reference [32] developed an interactive conflict solver using
reinforcement learning that leveraged human resolution ma-
neuvers. This resulted in AI recommended maneuvers that
closely aligned with human ATC behavior. More recently, [33]
proposed a hybrid geometric-reinforcement learning algorithm
for resolving conflicts in low-altitude airspace. While these
approaches are effective for sparse airspace environments, they
fail to handle state space scalability as the number of intruder
aircraft increases due to the either centralized, single-agent
architectures or fixed-length state vectors with a maximum
number of intruder aircraft.

To handle high-density airspace environments, multi-agent
formulations provide a promising solution by allowing multi-

ple agents to work together to achieve a common objective. In
the field of robotics, decentralized multi-agent reinforcement
learning approaches have been explored for handling multi-
robot control [34], [35], [36], [37], [38], [39], [40], [41], [42].
These approaches demonstrate that agents can effectively learn
to cooperate through decentralized interactions, however, the
approaches are limited to a small number of agents, rendering
intractable for high-density airspace environments. Multi-agent
approaches have also been investigated for conflict resolution
in both structured and free airspace settings [43], [44], [21],
[22], [45], [46], [47]. The key challenge in multi-agent settings
is handling the non-stationarity of the environment. With
multiple agents interacting in the environment, agents must
communicate or learn the behavior of other agents in order to
cooperate. Reference [44] introduced negotiation techniques
to resolve identified conflicts in the sector. Reference [48]
proposed a physics-informed deep reinforcement learning al-
gorithm for resolving conflicts with coordination rules in tradi-
tional airspace. In [21], a message-passing based decentralized
computational guidance algorithm using multi-agent Monte
Carlo Tree Search (MCTS) was proposed to prevent loss of
separation for UAS in an urban air mobility (UAM) setting. A
computationally efficient MDP based decentralized algorithm
was proposed in [22], capable of preventing LOS for UAS in
unstructured airspace. Recently, [49] proposed a graph neural
network approach to conflict resolution in free airspace by
representing each aircraft as a node in a graph to handle
scalability. In previous work [45], [46], [50], it is shown how
a decentralized separation assurance framework can prevent
LOS in high-density stochastic sectors by leveraging long
short-term memory networks (LSTM) and attention, but this
formulation only holds when all agents are homogeneous, or
optimizing the same reward function.

B. Contribution of this Article

With the aforementioned considerations, this article is de-
voted to scalable distributed separation assurance in high-
density stochastic en route sectors with heterogeneous agents.
Each agent has the ability to optimize its own reward function
that is unknown to other agents, or groups of agents can
share the same reward function. The agents also have the
ability to learn the intentions of other agents, which is critical
to ensure cooperation in this environment. This provides a
framework that is able to accommodate the requirements
of a mixed autonomy airspace environment with competing
companies where autonomy models may be proprietary. In
other words, this framework is flexible enough to handle an
arbitrary number of reward functions. By leveraging the work
of [50], this framework also benefits from modern compute
cluster environments, which significantly reduces the training
time and intruder aircraft scalability, providing a promising
solution to autonomous separation assurance in traditional and
low-altitude airspace operations.

The distinctive features of the proposed separation assur-
ance framework are three-fold. First, the proposed multi-
agent autonomous separation assurance (MAASA) framework
is efficient and capable of scaling to high-density airspace

3

environments. Second, the framework is able to learn the
intention of agents without explicitly knowing their objectives,
which more closely resembles encounters that will occur in
near future autonomous airspace operations. Third, while this
article focuses on en route structured airspace, the generality
of the framework allows it to be extensible to terminal area
and 3-dimensional airspace operations.

The remainder of this article is organized as follows. The
problem is first formulated in Section II. The MAASA frame-
work is proposed in Section III. Numerical experiments are
described in Section IV, and Section V concludes this article.

II. PROBLEM DESCRIPTION

Separation assurance involves providing advisories to air-
craft to prevent a loss of separation (LOS) event with other
aircraft in-trail, at intersections, and at metering fixes. The loss
of separation threshold, dLOS, defines a safety radius where
operations within the threshold become increasingly danger-
ous. Violating the loss of separation threshold may result in
collisions or near mid air collisions (NMACs) between aircraft,
which also results in drastic maneuvers from the aircraft.
Therefore, it is an essential task for air traffic controllers to
maintain safe aircraft separation in the airspace. In addition,
the separation assurance task also involves ensuring that air-
craft meet the required time of arrival (RTA) for metering
fixes. These RTAs allow controllers to prevent arrival delays
by ensuring aircraft are on schedule for airport arrivals. Any
given aircraft in the environment is referred to as an ownship,
with the other aircraft associated with the ownship referred to
as the intruder aircraft. In this way, each ownship will have
its own associated intruder aircraft from the point of view of
the ownship.

While the separation assurance task is performed by hu-
man air traffic controllers (ATC), with growing air traffic
operations, this task pushes the limit of human cognitive
decision making. Therefore, by introducing an autonomous
separation assurance framework, human ATCs can provide a
supervisory role over the autonomous system and intervene
if necessary, reducing their overall workload in high-density
airspace sectors.

In addition, it is also essential to consider the future opera-
tions in low-altitude airspace including UAM and UTM, with
regard to how these operations will integrate with traditional
airspace operations. In this low-altitude airspace environment,
instead of a centralized government authority like the FAA,
companies will operate their own autonomous aircraft with
potentially proprietary software. This provides additional com-
plexity since agents will need infer the behavior of other
aircraft to form cooperation since there is no centralized
authority and the parameters of the proprietary software may
be unknown.

III. MULTI-AGENT AUTONOMOUS SEPARATION
ASSURANCE

Given the aforementioned problem, in this section the multi-
agent autonomous separation assurance (MAASA) framework
is constructed.

A. Multi-Agent Reinforcement Learning

Consider the problem of N aircraft operating in a given
airspace sector at time t. For each ownship, there will be
an associated N − 1 intruder aircraft. However, since the
airspace environment is dynamic, with aircraft constantly
entering and exiting sectors, the value of N is not fixed over
time. This results in a variable number of intruder aircraft
that the ownship must sense at each time step to maintain
safe separation. Multi-agent reinforcement learning provides a
solution approach to the variable aircraft separation assurance
problem. Each aircraft is represented as an agent and has an
associated state space S (information the agent can sense),
action space A (actions the agent can implement in the
environment), and reward function R. At each time step t,
the agent senses a state st and selects an action at. The
environment is then updated as a result of the state-action
tuple (st, at) to st+1 and an associated reward rt is received.
How the environment updates from st to st+1 is based upon
the dynamics of the environment, which are often unknown.
In this way, the separation assurance problem is decentralized
with local agent decision making, rather than a centralized
approach, which does not scale with the number of agents.
Since this article is extending the work [50], this article uses
a similar formulation of state space, action space, and reward
function to ensure interoperability. The formulation is now
briefly discussed.

1) State Space: The state space, S defines the information
the agent requires to effectively make decisions. In this article,
it is assumed that each ownship can sense the position and
dynamics of the intruder aircraft. The state space for the
ownship and intruder aircraft is then defined as

sot = (x(o), y(o), d
(o)
goal, v

(o), a(o), hdg(o), dLOS,m(o)),

hot (i) = (x(i), y(i), d
(i)
goal, v

(i), a(i), hdg(i),m(i), d(i)o , d
(o)
int , d

(i)
int),

where sot is the state of the ownship at time t and hot (i) is the
state for intruder i at time t. The elements of the state space
for the ownship include the easting and northing location in
Universal Transverse Mercator (UTM) coordinates (x(o), y(o)),
the distance to the goal, or distance to the sector exit (d(o)goal),
aircraft speed (v(o)), aircraft acceleration (a(o)), aircraft head-
ing (hdg(o)), the loss of separation threshold (dLOS), and an
identifier for which model the ownship belongs to (m(o)). The
state for the intruder aircraft contains similar elements, except
since the LOS threshold is in the ownship state space, there
is no need to repeat this information in the intruder state.
The three additional elements in the intruder state include
the straight-line distance from the ownship to the intruder
(d(i)o), distance from the ownship to the intersection (d(o)int),
and the distance from the intruder to the intersection (d(i)int).
UTM coordinates were selected over latitude and longitude,
because they provide a way to represent the location in unit
meters. Since neural networks require normalized inputs, this
provides a more standard normalization unit irrelevant to the
size and location of the en route sector, whereas latitude and
longitude normalization may introduce approximation errors.
The term intersection as it is used in this article can refer

4

to a crossing point between two air routes, or a merging
point of air routes. The reasoning behind including these
terms in the intruder state space and not in the ownship
state is to create a fixed size state space representation. The
term d

(o)
int represents the distance from the ownship to the

intersection, however for a given air route there may be many
intersections and different air routes may have a different
number of intersections. If this information was included in
sot , the result would be a state that does not scale with the
number of intersections in the air route as there would need
to be a term for all possible intersections M , d(o)int1:M . However,
this issue can be resolved by recognizing that an intersection is
a potential conflict point between two aircraft. Therefore, only
the intersection information associated with a given intruder
needs to be considered. By including this information in the
variable-length intruder state, hot , this formulation is invariant
to the number of intersections for the ownship.

2) Action Space: Actions for the agent reflect horizontal
in-trail speed advisories, with a decision step of 12 seconds.
The decision step parameter can be modified based on the
application, as surveillance requirements may vary based on
the location of operations (e.g., near-terminal operations or
trans-oceanic operations). The action space is defined as

at = {a−, 0, a+},

where a− is to decelerate (decrease speed), 0 is no acceleration
(hold current speed), and a+ is acceleration (increase speed).
The magnitude of acceleration is dependent on the perfor-
mance envelope for a given aircraft type. Using acceleration
is analogous to a real-world air traffic controller setting a new
desired speed for the aircraft. Setting a new desired speed
will result in an acceleration change which is reflected in the
action space. Given the performance envelope of the aircraft
type is considered, the selected actions that would result in
speeds outside of the aircraft’s performance envelope have no
effect. This provides a more realistic scenario, as aircraft have
minimum and maximum operating speeds.

3) Reward Function: The reward function needs to be care-
fully designed to reflect the objective of separation assurance.
In this article, the reward function from [50] is extended to also
include a time step penalty. This encourages agents to move
through airspace quickly while maintaining safe separation.
The reward function for the state and action is defined as

R(s) =

−1 if dco < dLOS

−α+ δ · dco if dLOS ≤ dco < 20

0 otherwise
(1)

R(a) =

{
0 if a = ‘Hold’

−ψ otherwise
, (2)

where R(s) is the reward for a given state and R(a) is the
reward for a given action. The total reward for a given time
step can then be combined as

R(s, a) = R(s) +R(a) + ν. (3)

In R(s), the term dco represents the distance from the ownship
to the closest intruder aircraft. Therefore, the first inequality
captures the loss of separation penalty of −1, which is
the worst possible penalty. The middle inequality in R(s)
represents a buffer zone where the agent attempts to maximize
the minimum separation between the ownship and the closest
intruder. The values of α and δ are scaling constants to ensure
that the value of the reward is between (0,−1). The penalty
linearly increases as dco decreases, encouraging the ownship
to maximize the distance from the closest intruder when
possible. R(a) penalizes speed change advisories that are
not holding actions. Consecutive speed change advisories are
undesired and may negatively impact fuel consumption during
a flight. By incorporating this penalty, the agent must learn to
maintain safe separation, while also minimizing the number
of speed advisories. Finally, in the total reward function, ν is
a time step penalty that encourages agents to move through
the airspace sector as quickly as possible. This encourages
increased throughput while also achieving the aforementioned
objectives.

4) State Termination: The agents continue to operate in the
environment until a terminal state is reached. There are two
ways a terminal state is reached in the environment. First, the
agent can safely navigate through the sector without violating
safe separation requirements. This is referred to as a goal.
Second, the agent can violate the safe separation requirements.
One entire simulation run, hereafter referred to as an episode,
completes when all agents have reached their terminal state,

Naircraft = 0.

B. Heterogeneous Reinforcement Learning

While [50] introduced a general framework for decen-
tralized separation assurance with multi-agent reinforcement
learning, one key limitation is the assumption that all agents
follow the same reward function (or model). In future tradi-
tional airspace, and more specifically in low-altitude airspace
operations, the objectives of other aircraft may be unknown. In
these cases, rather than having homogeneous agents optimiz-
ing the same reward function, the environment now involves
heterogeneous agents optimizing different reward functions.
This presents a challenging environment where companies
may have their own optimization scheme that differs in the
objective of others. To illustrate, consider two companies,
company A and company B, optimizing the reward function
in (1) and (2). Company A decides to select ψ = 0 and
company B decides to select ψ = 0.01. The result of this
slight difference will be the following policy. The policy for
company A will not penalize alternating speed advisories,
while the policy for company B will be more conservative,
attempting to minimize the number of speed advisories. This
violates the cooperation assumption in [50], since agents are
no longer optimizing the same reward function and their
polices may differ.

In this article, a mechanism for learning the intruder air-
craft’s intent is proposed to alleviate the requirement that
agents need to optimize the same reward function. Suppose

5

there are M reward functions and the agents are free to select
any of the M functions. If the number of agents, N is larger
than M , then agents can group into the same reward function.
Each reward function will have an associated neural network
model with weights θ that is optimized to learn a policy that
reflects the behavior of the reward function. To alleviate the
constraint of a single reward function, a second model with
weights, ϕ is introduced to predict the action distribution for
the intruder aircraft. Each intruder aircraft may belong to any
of the M reward functions, so by predicting their intended
action, the ownship is able to select an action that cooperates
with the intruder’s policy, as all agents are still required to
maintain safe separation.

1) Proximal Space Optimization: The reinforcement learn-
ing algorithm used in [50] was proximal policy optimization
(PPO) [51] with general advantage estimation [52], and this
article leverages this approach. Proximal policy optimization
is a policy based reinforcement learning algorithm where the
basic idea is to learn a parameterized policy (a mapping from
a given state to a probability distribution over the actions) to
maximize the cumulative reward J , by following the gradient
of J with respect to the policy parameter. Policy based
algorithms have advantages over value based reinforcement
learning algorithms, as stochastic policies can be learned. A
neural network is used to approximate both the policy (actor)
and the value function (critic), and it is often common to use
shared layers of a single neural network for both the actor
and critic. This neural network is optimizing the following
loss functions

Lπ(θ) = −Et[min(ζt(θ) ·At, clip(ζt(θ), 1− ϵ, 1 + ϵ) ·At)]

− β ·H(π(st)) (4)

Lv = A2
t , (5)

where Lπ is the policy loss and Lv is the value loss. ϵ is a
hyperparameter that bounds the policy changing ratio ζt(θ).
The second term in Equation (4), β ·H(π(st)) is an entropy
regularization term to encourage exploration by preventing
early convergence to sub-optimal polices. H is the entropy
of the policy distribution and the hyperparameter β controls
the strength of the entropy regularization term. The advantage
function At in Equations (4) and (5) provides a measure
of which action is better or worse than the current policy’s
behavior. In this way, actions with high advantage will be
further reinforced into the policy, with actions resulting in low
advantage discouraged. The generalized advantage estimator
GAE(γ, λ) [52] provides a way to approximate At, which is
defined as the exponentially-weighted average of the k-step
advantage estimators

At = (1− λ)(Â
(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·) (6)

where

Â
(1)
t = −V (st) + rt + γV (st+1)

Â
(2)
t = −V (st) + rt + γrt+1 + γ2V (st+2)

Â
(3)
t = −V (st) + rt + γrt+1 + γ2rt+2 + γ3V (st+3)

· · ·
Â

(k)
t = −V (st) +

∑t+k−1
i=t γi−tri + γkV (st+k) .

(7)
2) Learning Intruder’s Intent: In a real world setting,

agents would be unable to directly observe the action dis-
tribution of the intruder aircraft; the agents would only be
able to observe their resulting action. In this case, since the
intention learning model with weights ϕ is learning the action
distribution of the intruder aircraft, a natural choice for the loss
function is the cross entropy. This way, the model is trained to
minimize the difference between the predicted distribution and
the true resulting action. Throughout training, the predicted
distribution will approach the true action distribution of the
intruder aircraft through observation of the intruder’s action.
The cross entropy loss is formulated as

LCE = −
C∑
i=1

ti · log(pi), (8)

where C is the number of actions, ti is the true action for
a given intruder (one-hot encoded), and pi is the predicted
action distribution.

There are two ways to train the intention learning model
to optimize the loss function. The first is by updating the
model directly before updating the actor-critic model in an
online manner as in [53]. The second is by using a shared
model architecture to jointly train the actor, the critic, and the
intention learning model (θ = ϕ). Through initial architecture
exploration, it was found that jointly training the models
resulted in overall faster learning and better performance, so
this article focuses on a joint training formulation. Therefore,
the total loss function for the MAASA framework is defined
as

L = Lπ + Lv + LCE. (9)

This provides an intuitive extension to the shared layer loss
function of [50]. The loss in [50] can be recovered by simply
setting LCE = 0. This provides a model that is applicable to
both homogeneous and heterogeneous agents.

C. Architecture

The MAASA architecture is illustrated in Fig. 1, with the
intention learning model illustrated in Fig. 2. The intention
learning model is implemented architecturally as a neural
network and optimized via the cross entropy loss as discussed
in Section III.B.2. The input corresponds to the preprocessed
intruder state information het , which is then processed through
three fully connected layers with 128 nodes. The output is a
fully connected layer with 3 nodes (1 for each action) with a
softmax activation applied to provide the predicted action dis-
tribution ât. The intention learning model is incorporated into
the MAASA framework as shown in Fig 1. In the MAASA

6

!"#

ℎ"# 1

ℎ"# 2

ℎ"# 3
.
.
.

ℎ"# (

Input

FC
(128)

FC
(128)

Preprocess Concat. Concat.

ℎ")

!")

FC
(256)

FC
(256)

FC
(1)

FC
(3)

*(!)

-(!, /)

Hidden Layers Output

At
te

nt
io

n

In
te

nt
io

n
Le

ar
ni

ng

0/"

0/"

ℎ") FC
(128)

AttentionPreprocess

Fig. 1: MAASA neural network architecture. The input is the ownship state and the variable number intruder state information.
The output is the value, policy, and predicted action distribution from the intention learning model (shown in yellow).

FC
(128)

ℎ"# 1

ℎ"# 2

ℎ"# 3
.
.
.

ℎ"# '

Input

FC
(128)

FC
(128)

FC
(3)

Hidden Layers Output

()"

Fig. 2: MAASA intention learning neural network architecture. The input is the preprocessed intruder state information and
the output is the predicted action distribution for each intruder.

framework, the ownship and intruder state information (sot
and hot , respectively) is first preprocessed through two fully
connected layers with 128 nodes to provide a consistent feature
dimension. Then, the intruder information is processed through
the intention learning model (Fig. 2) to extract the predicted
action distribution. This predicted action distribution for each
intruder is concatenated with the already preprocessed intruder
state information. This is an important step, because now this
concatenated vector contains the intruder state information,
along with the predicted action distribution, providing more
information for the ownship to make a decision. This con-
catenated vector is processed through a fully connected layer
of 128 nodes to ensure that the concatenated vector has a con-
sistent feature dimension with the preprocessed ownship state
information. This is required since concatenating the action
distribution results in the dimension of the vector increasing
from 128 to 131 (3 actions) and the attention network requires
consistent feature dimensions. From there, the ownship and
intruder information is processed through an attention network
as defined in [50] to encode the variable number of intruder
aircraft into a fixed-length vector. The fixed-length vector is
then concatenated with the preprocessed ownship information

before being sent through two fully connected layers with 256
nodes. The output of the framework is the value, the policy,
and the action prediction. Unless otherwise noted, each fully
connected was followed by a Leaky ReLU activation function.

IV. EXPERIMENTS

To evaluate the performance of the proposed MAASA
framework, the open-source BlueSky [54] air traffic simulation
environment was used to develop several case studies. The
BlueSky simulator provides realistic, fast-time simulations
with real-world aircraft performance data. In addition, leverag-
ing open-source environments provides equal opportunity for
researchers and industry to baseline implementations. While
the environment is not designed for reinforcement learning,
[50] introduced a scalable reinforcement learning extension to
BlueSky that allows for integration with modern cluster com-
puting environments. This approach uses the Ray [55] python
module to allow for parallel CPU threads to simultaneously
interact with their own copies of the BlueSky environment,
greatly increasing the number of simulations that can be
executed. This was found to not only decrease training time
to hours instead of days, but also increase performance. All

7

TABLE I: Finalized hyperparameters for MAASA.

Parameter Value
Learning Rate 0.0001

GAE Discount Factor γ 0.99
GAE Discount Factor λ 0.95

PPO Ratio Bound ϵ 0.4
Entropy Coefficient β 0.0001

Parallel Workers 75
Leaky Relu Alpha 0.2

experiments were run on a AMD Ryzen Threadripper 2950x
(16 cores, 32 threads) workstation with a Nvidia RTX 2080 TI
GPU (12 GB) and 128 GB RAM1. MAASA parameters were
selected through hyperparameter tuning. Table I provides the
final parameter values used in the numerical experiments.

A. Experimental Setup
1) Baseline: The baseline introduced in this article to com-

pare performance is the D2MAV-A framework [50]. D2MAV-
A is considered the state-of-the-art in distributed separation
assurance with reinforcement learning and is shown to be
capable of minimizing loss of separation events for homo-
geneous agents. The main difference between the MAASA
framework and the D2MAV-A is the intention learning model.
The D2MAV-A does not have the ability to predict the action
distribution of intruder aircraft and is restricted under the
assumption that all aircraft follow the same policy, whereas the
MAASA framework removes this assumption by introducing
the intention learning model to predict the action distribution
for intruder aircraft. This article also provides the result of
a random agent (when applicable) to compare the worst-case
performance.

2) Case Studies: To provide a fair comparison with the
D2MAV-A framework, the three case studies introduced in
[50] (case study A, B, and C) are used, along with a new case
study D. An illustration of case study D is shown in Fig 3. The
case studies represent en route sectors of varying number of
route and intersections. The characteristics of each case study
are provided in Table II. In each episode (simulation run),
50 aircraft are sent through the sector following a uniform
inter-arrival distribution of three to six minutes. This creates
a high-density airspace environment where the agents must
learn to generalize to unforeseen aircraft orientations, given
the stochastic inter-arrival times. Fig. 4 displays the number
of aircraft in each case study over time for a given episode.
Each case study provides a scenario where over 10 agents
are selecting speed advisories at the same time, which is
infeasible for a human. Case study D provides an extremely
high-density sector where close to 50 aircraft are selecting a
speed advisory at the same time. Heterogeneity in the airspace
is introduced through five different reward functions, where the
agents are uniformly assigned to a neural network model (θi)
that is optimizing the objectives of one of the reward functions.
Therefore, there will be a total of five (neural network) models
corresponding to each of the reward functions. The parameters
of the reward functions are provided in Table III.

1Code will be made available at https://github.com/marcbrittain

!"

!#

!$

!%

!&

!'

!(

)"

)#

)%

)$

)&

)'

)(

)*

Fig. 3: Case study D en route sector.

0 20 40 60 80 100 120 140 160
Time (minutes)

0

10

20

30

40

50

Nu
m

be
r o

f A
irc

ra
ft

Case Study A
Case Study B
Case Study C
Case Study D

Fig. 4: Number of aircraft in the sector over time for each
case study.

TABLE II: Characteristics of the en route case study sectors.

Case Study Routes Intersections
A 2 1
B 3 2
C 3 3
D 7 8

TABLE III: Parameters values used for each reward function.

Parameter R1 R2 R3 R4 R5

Reward Coefficient α 0.1 0.1 0.1 0.1 0.1
Reward Coefficient δ 0.005 0.005 0.005 0.005 0.005
Reward Coefficient ψ 0.001 0 0.001 0.002 0
Reward Coefficient ν 0 0.001 0.001 0 0.002

B. Experimental Results

In this section, the performance of the MAASA framework
is evaluated on case studies through various numerical ex-
periments. For all experiments, the agents were allowed to
train for 150k episodes, with 50 Airbus A320 aircraft in each
episode. After training, a testing phase is then performed
for 200 new episodes to evaluate the performance of the
frameworks. Therefore, the optimal solution is 50 goals, or
50 aircraft exit the sector without violating loss of separation.
Unless otherwise noted, three reward functions (R1, R2, and

8

0 20000 40000 60000 80000 100000 120000 140000
Episode

15

20

25

30

35

40

45

50
Go

al
s

MAASA
D2MAV-A
Optimal

(a) Case Study A

0 20000 40000 60000 80000 100000 120000 140000
Episode

30

35

40

45

50

Go
al

s

MAASA
D2MAV-A
Optimal

(b) Case Study B

0 20000 40000 60000 80000 100000 120000 140000
Episode

15

20

25

30

35

40

45

50

Go
al

s

MAASA
D2MAV-A
Optimal

(c) Case Study C

0 20000 40000 60000 80000 100000 120000 140000
Episode

15

20

25

30

35

40

45

50

Go
al

s
MAASA
D2MAV-A
Optimal

(d) Case Study D

Fig. 5: Learning curves smoothed with 200-episode rolling average for clarity.

R3 from Table III) are used in all experiments to create the
heterogeneous airspace.

1) Learning Efficiency: It is important to understand how
efficient the framework is regarding model training. Giving
that computational resources can be expensive, minimizing
compute time while maximizing performance is an important
attribute for a framework to have. This experiment involved
evaluating the number of episodes until convergence during
training, where convergence is defined as the first time the
optimal score (50 goals achieved) is obtained over a 150-
episode rolling average. Table IV provides the results of
this experiment. For case studies A and B, the MAASA
framework is able to converge in much fewer episodes in
comparison to the D2MAV-A framework. In addition, for case
studies C and D, the MAASA framework converged in less
than 100k episodes, with the D2MAV-A framework failing
to converge over the 150k training episodes. The learning
curves throughout training are shown in Fig. 5. It can be seen
in Fig. 5 that for each case study, the MAASA framework
learns faster than the D2MAV-A framework. In case study
A, both frameworks quickly converge to the optimal score,
with additional exploration resulting in spikes in the learning
curve. Case studies B, C, and D follow a similar trend where
the MAASA framework quickly diverges from the D2MAV-
A framework, achieving better performance in fewer training
episodes.

TABLE IV: Number of training episodes until convergence.

Case Study MAASA D2MAV-A
A 3110 5225
B 28278 67172
C 81539 -
D 81898 -

When observing Table IV, it is important to realize why
the MAASA framework is able to learn more efficiently
than the D2MAV-A framework. As mentioned earlier, non-
stationarity is a key challenge in multi-agent reinforcement
learning. With each agent learning and updating their own
individual polices, the agents can enter an endless cycle of
adapting to the other agent’s polices, losing sight of their in-
dividual objectives [56]. Non-stationarity becomes even more
pronounced in heterogeneous environments where the agents
may now belong to different learned models and do not have
a sense of the objectives of the other agents. This breaks
the Markov assumption that governs many single agent RL
algorithms. Without a mechanism for the agents to explain
why the other agents are acting a certain way, the agents
may never converge to the optimal behavior [56]. By learning
the intention of the intruder aircraft, each ownship is able
to obtain an internal estimate of how the intruder aircraft is
going to behave, reducing the non-stationarity in the learning

9

TABLE V: Performance of the policy tested for 200 independent episodes.

Case Study A Case Study B Case Study C Case Study D
Framework Mean Median Mean Median Mean Median Mean Median

MAASA 49.75 ± 0.719 50 50.0 ± 0.0 50 50.0 ± 0.0 50 49.92 ± 0.44 50
D2MAV-A 47.52 ± 2.21 48 49.96 ± 0.28 50 49.84 ± 0.578 50 49.775 ± 0.689 50
Random 19.6 ± 3.54 20 32.455 ± 4.31 32 19.62 ± 3.33 20 19.19 ± 3.21 20

TABLE VI: Performance of the policy tested for 200 independent episodes with varying number of models.

1 Model 3 Models 5 Models
Framework Mean Median LOS Events Mean Median LOS Events Mean Median LOS Events

MAASA 50.0 ± 0.0 50 0 50.0 ± 0.0 50 0 49.98 ± 0.199 50 4
D2MAV-A 50.0 ± 0.0 50 0 49.84 ± 0.578 50 32 49.86 ± 0.51 50 28

1 3 5
Models

0

5

10

15

20

25

30

LO
S

Ev
en

ts

MAASA
D2MAV-A

Fig. 6: Total number of LOS events during the testing phase.

process. In contrast, without the intention learning model
the D2MAV-A framework takes significantly longer to reach
similar performance to MAASA (case study B), or never
converges (case study C and case study D).

The important takeaway from this result is that convergence
can be achieved in minimal compute time, as training for
100k episodes only takes approximately 10 hours of wall-clock
training time. Given that the MAASA framework converged
in 3110 episodes for case study A, this means that in approx-
imately 30 minutes a converged policy can be obtained.

2) Policy Evaluation: To evaluate the overall performance
of the MAASA framework, the best model weights from
training are extracted and tested on 200 new episodes2. The
mean and median episode scores are recorded in Table V.
Given that 50 aircraft are sent through the sector, the optimal
performance is 50, representing all aircraft exited the sector
without violating the loss of separation threshold. It can be
seen that across all case studies, the MAASA framework
results in a significant improvement over the D2MAV-A frame-
work. While the MAASA framework achieved a score above
49.7 on all case studies, the D2MAV-A framework performed
poorly on case Study A and achieved a lower score across all
case studies. This shows how important learning the intention
of the intruder aircraft is to obtain good performance.

2A video of the converged policy for case study D can be found at
https://youtu.be/Udj4a7uLNXE

3) Heterogeneous Airspace: To further demonstrate the
performance of the MAASA framework in heterogeneous
airspace, the number of reward functions is varied from one to
five and evaluated on case study C. Each reward function has a
corresponding model that the agents are randomly assigned to
upon entering the sector, diversifying the objectives the agents
are optimizing. Therefore, increasing the number of models
is analogous to increasing the heterogeneity of the airspace
environment. One model represents a homogeneous airspace
(all aircraft obeying the same model), three models represents
medium heterogeneous airspace, and five models represents
high heterogeneous airspace. The evaluation criteria follows
the same method as described earlier, where the agents train
for 150k episodes and then test on 200 new episodes. The
results from the testing phase are shown in Fig. 6 and Table VI.
It can be seen from Table VI that the MAASA framework
leads to consistently better performance in comparison to
the D2MAV-A framework, even as the heterogeneity of the
airspace increases.

While the mean scores in Table VI are relatively close
between MAASA and D2MAV-A, there are significant differ-
ences in safety between these two frameworks. As displayed
in Fig. 6, during the testing phase, it can be observed that the
D2MAV-A framework results in more LOS events compared to
the MAASA framework. When the airspace is homogeneous,
the number of LOS events is equivalent between the D2MAV-
A and MAASA frameworks, which is expected given the
D2MAV-A framework is operating on the assumption that
all aircraft obey the same model. Once heterogeneity is
introduced into the airspace through three and five different
models, the D2MAV-A framework results in 32 and 28 LOS
events, respectively. In contrast, the MAASA framework has
0 LOS events when there are three models and 4 LOS
events when there are five models. This equates to a 86%
decrease in LOS events when there are five models (high
airspace heterogeneity). In safety critical applications such
as air transportation, minimizing the number of LOS events
is essential for preventing any potential mid-air collisions.
Therefore, the MAASA framework is shown to be a safer
option in comparison to the D2MAV-A framework.

Performance degradation as seen in Table VI is expected
as the number of models increases, given the conservative
training time. Further performance gains can be expected given

10

TABLE VII: Performance of the policy tested for 200 independent episodes with varying interarrival distribution.

3-6 Min. 3-8 Min. 3-10 Min.
Framework Mean Median Mean Median Mean Median

MAASA 50.0 ± 0.0 50 50.0 ± 0.0 50 50.0 ± 0.0 50
D2MAV-A 49.84 ± 0.578 50 50.0 ± 0.0 50 50.0 ± 0.0 50

more training episodes, however, it is important to demonstrate
the relative performance under constrained compute resources.
In this case, the MAASA framework shows to be a better
choice of framework when handling heterogeneous airspace.

4) Sensitivity Analysis: The three to six minute uniform
interarrival distribution provides a high-density airspace en-
vironment that is more challenging in comparison to the
density of today’s airspace. In today’s airspace, each route has
its own interarrival distribution that can vary from minutes
to tens of minutes and hours. Given that the experiments
assume that each route follows the same distribution, this acts
as a stress test to view the performance of the framework
under max airspace capacity. Therefore, it is important to
understand the sensitivity of the MAASA framework under
different interarrival distributions. The MAASA framework
is evaluated with three interarrival distributions as shown in
Table VII for case study C, following the same evaluation
procedure as described earlier. The 3-10 minute interarrival
distribution represents a low-density airspace, 3-8 minutes rep-
resents medium-density airspace, and 3-6 minutes represents
high-density airspace. As seen in Table VII, the performance
of the MAASA and D2MAV-A frameworks are equivalent in
low to medium-density airspace, but differ in high-density
airspace where MAASA outperforms D2MAV-A. In low to
medium-density airspace, it is likely that the aircraft may be
sufficiently separated so that the impact of heterogeneity is
not as pronounced. When operating in high-density airspace,
MAASA is the best option given it obtains the optimal score of
50 (no LOS events), while the D2MAV-A framework achieves
a score of 49.84 (LOS events occurred).

5) Intention Learning Prediction: To evaluate the perfor-
mance of the intention learning model, the predicted intruder
intent is compared with the true action of the intruder aircraft
to obtain the accuracy of the prediction. This provides a more
comprehensible metric, in contrast to the cross entropy loss
itself. To calculate the accuracy, the true action distribution
of the intruder is recorded, along with the predicted action
distribution. The action with the maximum probability is
selected for both distributions and compared to obtain the
accuracy. The result of this experiment is shown in Table VIII.
It can be seen that in case study A, B, C, the accuracy of
the intention learning model was greater than 90%, with the
accuracy slightly below on case study D at 89%. 90% accuracy
demonstrates that the intention learning model is accurately
predicting the actions of the intruder aircraft, and by having
this information, the overall performance of the MAASA
framework is improved. Given that only 150k training episodes
were used, it is suspected that with more training better
performance can be achieved.

While the accuracy provides a more interpretable metric for
performance, it is important to note that since each intruder

TABLE VIII: Accuracy of the intention learning model on
each case study.

Case Study Accuracy
A 92%
B 92%
C 91%
D 89%

TABLE IX: Mean Wasserstein-1 distance for each case study.

Case Study Intention Learning Model Baseline
A 0.03 ± 0.06 0.41 ± 0.07
B 0.02 ± 0.06 0.42 ± 0.06
C 0.03 ± 0.07 0.42 ± 0.06
D 0.03 ± 0.07 0.42 ± 0.06

is also randomly selecting their action, actions with equal
probability may not be properly reflected by this metric.
For example, if the true action distribution for an intruder
is [0.33, 0.33, 0.34] and the predicted action distribution is
[0.34, 0.33, 0.33], the accuracy metric would assign the true
action as a+ (third element) and the predicted action as a−
(first element), resulting in an incorrect prediction. However,
in the MAASA framework the agent has access to the entire
action distribution ât, rather than a single action, so it is more
important to know how close the true and predicted action
distributions are, rather than the accuracy. To quantify the
distance between two distributions, the Wasserstein-1 distance
[57] is used. Given two probability distributions µ, ν, the
Wasserstein-1 distance is defined as

l1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

|x− y|dγ(x, y), (10)

where Γ(µ, ν) is the set of probability distributions on M×M ,
whose marginals are µ and ν. Given that for each state in the
environment, there is an associated action action distribution,
we record the mean and standard deviation of the Wasserstein
distance between the predicted and true action distribution.
In addition, to provide a baseline Wassterstein distance, we
also compute the Wasserstein distance between a uniform
distribution and the true action distribution. This provides
insight into the worst case Wasserstein distance where the
predicted action distribution is always uniform, or provides
no useful information. The results of this analysis are shown
in Table IX. It can be seen that in comparison to the baseline,
the Wasserstein distance for the intention learning model is
very small, providing a predicted action distribution that is
representative of the true action distribution. This allows the
ownship to have insight of the intruder’s behavior and select
actions accordingly, removing the assumption that agent’s
objectives need to be known a-priori.

11

V. CONCLUSION

In this article, a decentralized autonomous separation assur-
ance framework is proposed for handling heterogeneous high-
density airspace sectors. With the intention learning model,
agents are able to predict the intent of each intruder aircraft,
reducing the non-stationarity in the environment, as well as
allowing the agents to select actions that cooperate with the
intruder’s intent. By training the intention learning model
with shared layers of the entire MAASA neural network, this
reduces the overall number of training parameters and provides
a more efficient training solution since batches of data can be
jointly trained, rather than having to train one model before the
other. In addition, given the decentralized implementation, the
MAASA framework is able to computationally scale to any
number of agents and is not restricted to a centralized con-
troller. The results show that the MAASA framework signifi-
cantly improves the state-of-the-art in heterogeneous airspace
where agents are optimizing different reward functions. It is
also shown through experiments that the intention learning
model effectively learns the policy of the intruder aircraft in a
limited number of training episodes. While this article focuses
on en route structured airspace, the general approach of the
MAASA framework allows it to be easily extended to 3D
airspace environments or different reward formulations. Given
these facts, this demonstrates the effectiveness of the article.

ACKNOWLEDGMENT

This research is partially funded by the National Science
Foundation under Award No. 1718420, NASA Iowa Space
Grant under Award No. NNX16AL88H, and the NVIDIA GPU
Grant program.

REFERENCES

[1] N. R. Council, Autonomy research for civil aviation: toward a new era
of flight. National Academies Press, 2014.

[2] E. R. Mueller, P. H. Kopardekar, and K. H. Goodrich, “Enabling airspace
integration for high-density on-demand mobility operations,” in 17th
AIAA Aviation Technology, Integration, and Operations Conference,
2017, p. 3086.

[3] S. J. Undertaking, “U-space blueprint,” SESAR Joint Undertaking.
Accessed September, vol. 18, 2017.

[4] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and
J. E. Robinson, “Unmanned aircraft system traffic management
(utm) concept of operations,” 2016. [Online]. Available: https:
//ntrs.nasa.gov/search.jsp?R=20190000370

[5] G. Hunter and P. Wei, “Service-oriented separation assurance for small
uas traffic management,” in 2019 Integrated Communications, Naviga-
tion and Surveillance Conference (ICNS). IEEE, 2019, pp. 1–11.

[6] H. Erzberger and E. Itoh, “Design principles and algorithms for
air traffic arrival scheduling,” 2014. [Online]. Available: https:
//ntrs.nasa.gov/citations/20140010277

[7] B. T. Baxley, W. C. Johnson, J. Scardina, and R. F. Shay, “Air traffic
management technology demonstration-1 concept of operations (atd-1
conops), version 3.0,” 2016.

[8] E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron, “Resolution of conflicts
involving many aircraft via semidefinite programming,” Journal of
Guidance, Control, and Dynamics, vol. 24, no. 1, pp. 79–86, 2001.

[9] A. U. Raghunathan, V. Gopal, D. Subramanian, L. T. Biegler, and
T. Samad, “Dynamic optimization strategies for three-dimensional con-
flict resolution of multiple aircraft,” Journal of guidance, control, and
dynamics, vol. 27, no. 4, pp. 586–594, 2004.

[10] P. J. Enright and B. A. Conway, “Discrete approximations to optimal
trajectories using direct transcription and nmiscar programming,” Jour-
nal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 994–1002,
1992.

[11] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 1917–1922.

[12] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of
swarms of spacecraft using sequential convex programming,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.

[13] D. Delahaye, C. Peyronne, M. Mongeau, and S. Puechmorel, “Aircraft
conflict resolution by genetic algorithm and b-spline approximation,” in
EIWAC 2010, 2nd ENRI International Workshop on ATM/CNS, 2010,
pp. 71–78.

[14] M. Pontani and B. A. Conway, “Particle swarm optimization applied to
space trajectories,” Journal of Guidance, Control, and Dynamics, vol. 33,
no. 5, pp. 1429–1441, 2010.

[15] J. P. Chryssanthacopoulos and M. J. Kochenderfer, “Accounting for state
uncertainty in collision avoidance,” Journal of Guidance, Control, and
Dynamics, vol. 34, no. 4, pp. 951–960, 2011.

[16] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next-
generation airborne collision avoidance system,” Massachusetts Institute
of Technology-Lincoln Laboratory Lexington United States, Tech. Rep.,
2012.

[17] J. P. Chryssanthacopoulos and M. J. Kochenderfer, “Decomposition
methods for optimized collision avoidance with multiple threats,” Jour-
nal of Guidance, Control, and Dynamics, vol. 35, no. 2, pp. 398–405,
2012.

[18] ——, “Hazard alerting based on probabilistic models,” Journal of
guidance, control, and dynamics, vol. 35, no. 2, pp. 442–450, 2012.

[19] H. Y. Ong and M. J. Kochenderfer, “Markov decision process-based
distributed conflict resolution for drone air traffic management,” Journal
of Guidance, Control, and Dynamics, pp. 69–80, 2016.

[20] Y. Fu, X. Yu, and Y. Zhang, “Sense and collision avoidance of unmanned
aerial vehicles using markov decision process and flatness approach,” in
2015 IEEE International Conference on Information and Automation,
2015, pp. 714–719.

[21] X. Yang and P. Wei, “Scalable multi-agent computational guidance with
separation assurance for autonomous urban air mobility,” Journal of
Guidance, Control, and Dynamics, 2020.

[22] J. Bertram and P. Wei, “Distributed computational guidance for high-
density urban air mobility with cooperative and non-cooperative collision
avoidance,” in AIAA Scitech 2020 Forum, 2020, p. 1371.

[23] X. Yang and P. Wei, “Autonomous free flight operations in urban air
mobility with computational guidance and collision avoidance,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–14, 2021.

[24] M. J. Kochenderfer and J. Chryssanthacopoulos, “Robust airborne colli-
sion avoidance through dynamic programming,” Massachusetts Institute
of Technology, Lincoln Laboratory, Project Report ATC-371, 2011.

[25] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 3, pp. 598–608, 2018.

[26] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan,
S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt,
D. Silver, T. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing, “Starcraft ii: A new challenge for
reinforcement learning,” arXiv preprint arXiv:1708.04782, 2017.

[27] C. Amato and G. Shani, “High-level reinforcement learning in strat-
egy games,” in Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2010, pp. 75–82.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[30] M. Brittain and P. Wei, “Autonomous aircraft sequencing and separation
with hierarchical deep reinforcement learning,” in Proceedings of the
International Conference for Research in Air Transportation, 2018.

[31] D.-T. Pham, N. P. Tran, S. Alam, V. Duong, and D. Delahaye, “A ma-
chine learning approach for conflict resolution in dense traffic scenarios
with uncertainties,” in 13th USA/Europe ATM R&D Seminar, 2019.

[32] P. N. Tran, D.-T. Pham, S. K. Goh, S. Alam, and V. Duong, “An
interactive conflict solver for learning air traffic conflict resolutions,”

12

Journal of Aerospace Information Systems, vol. 17, no. 6, pp. 271–277,
2020.

[33] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Improvement of conflict
detection and resolution at high densities through reinforcement learn-
ing,” in Proceedings of the International Conference for Research in Air
Transportation, 2020.

[34] R. Konda, H. M. La, and J. Zhang, “Decentralized function approxi-
mated q-learning in multi-robot systems for predator avoidance,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6342–6349, 2020.

[35] L. Zhang, Y. Sun, A. Barth, and O. Ma, “Decentralized control of multi-
robot system in cooperative object transportation using deep reinforce-
ment learning,” IEEE Access, vol. 8, pp. 184 109–184 119, 2020.

[36] X. Chen, B. Fu, Y. He, and M. Wu, “Timesharing-tracking framework
for decentralized reinforcement learning in fully cooperative multi-agent
system,” IEEE/CAA Journal of Automatica Sinica, vol. 1, no. 2, pp. 127–
133, 2014.

[37] L. Li and W. Sheng, “Collision avoidance dynamic window approach
in multi-agent system,” in 2020 Chinese Automation Congress (CAC),
2020, pp. 2307–2311.

[38] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 3052–3059.

[39] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 2017, pp. 285–292.

[40] R. E. Wang, M. Everett, and J. P. How, “R-maddpg for partially
observable environments and limited communication,” ICML Workshop:
Reinforcement Learning for Real Life, 2019.

[41] I. Draganjac, D. Miklić, Z. Kovačić, G. Vasiljević, and S. Bogdan,
“Decentralized control of multi-agv systems in autonomous warehousing
applications,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 13, no. 4, pp. 1433–1447, 2016.

[42] W. Dong, S. Liu, Y. Ding, X. Sheng, and X. Zhu, “An artificially
weighted spanning tree coverage algorithm for decentralized flying
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 17, no. 4, pp. 1689–1698, 2020.

[43] P. K. Menon, G. D. Sweriduk, and B. Sridhar, “Optimal strategies for
free-flight air traffic conflict resolution,” Journal of Guidance, Control,
and Dynamics, vol. 22, no. 2, pp. 202–211, 1999.

[44] S. Wollkind, J. Valasek, and T. Ioerger, “Automated conflict resolution
for air traffic management using cooperative multiagent negotiation,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004,
p. 4992.

[45] M. Brittain and P. Wei, “Autonomous separation assurance in an high-
density en route sector: A deep multi-agent reinforcement learning
approach,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE, 2019, pp. 3256–3262.

[46] ——, “One to any: Distributed conflict resolution with deep multi-agent
reinforcement learning and long short-term memory,” in AIAA Scitech
2021 Conference, 2021.

[47] H. Niu, C. Ma, P. Han, and J. Lv, “An airborne approach for conflict
detection and resolution applied to civil aviation aircraft based on
orca,” in 2019 IEEE 8th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC), 2019, pp. 686–690.

[48] P. Zhao and Y. Liu, “Physics informed deep reinforcement learning
for aircraft conflict resolution,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–14, 2021.

[49] J. Mollinga and H. van Hoof, “An autonomous free airspace en-route
controller using deep reinforcement learning techniques,” arXiv preprint
arXiv:2007.01599, 2020.

[50] M. Brittain, X. Yang, and P. Wei, “A deep multi-agent reinforcement
learning approach to autonomous separation assurance,” arXiv preprint
arXiv:2003.08353, 2020.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[52] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[53] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in neural information processing systems, 2017,
pp. 6379–6390.

[54] J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator project: an open
data and open source approach,” in Proceedings of the 7th International

Conference on Research in Air Transportation. FAA/Eurocontrol
USA/Europe, 2016, pp. 1–8.

[55] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in 13th USENIX
Symposium on Operating Systems Design and Implementation OSDI
2018, 2018, pp. 561–577.

[56] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, “Dealing
with non-stationarity in multi-agent deep reinforcement learning,” arXiv
preprint arXiv:1906.04737, 2019.

[57] C. Villani, Optimal transport: old and new. Springer Science &
Business Media, 2008, vol. 338.

Marc Brittain is a fourth-year Ph.D. candidate in
the Department of Aerospace Engineering at Iowa
State University. He is currently working as a re-
search assistant under Dr. Peng Wei who leads the
Intelligent Aerospace Systems Laboratory (IASL).
He received his bachelor’s of science degree in
Physics with a minor in mathematics from the Uni-
versity of North Carolina at Wilmington. His re-
search interests include Deep Reinforcement Learn-
ing, Multi-Agent Reinforcement Learning, Machine
Learning, Air Traffic Management with applications

in UAS Traffic Management (UTM) and Air Traffic Control (ATC).

Peng Wei is an assistant professor in the Department
of Mechanical and Aerospace Engineering at the
George Washington University. By contributing to
the intersection of control, optimization, machine
learning, and artificial intelligence, he develops au-
tonomy and decision support tools for aeronautics,
aviation and aerial robotics. His current focus is on
safety, efficiency, and scalability of decision making
systems in complex, uncertain and dynamic environ-
ments. His recent applications include: Air Traffic
Control/Management (ATC/M), Airline Operations,

UAS Traffic Management (UTM), eVTOL Urban Air Mobility (UAM) and
Autonomous Drone Racing (ADR). He is leading the Intelligent Aerospace
Systems Lab (IASL). He received his Ph.D. degree in Aerospace Engineering
from Purdue University in 2013.

