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Abstract—Aircraft separation assurance is an extremely chal-
lenging task in a complex airspace. Deep Reinforcement Learning
(DRL) was used to develop aircraft separation assurance models
in our previous works. Though these models have shown promis-
ing performance, the DRL agents make decisions in a nontrans-
parent way, limiting their use in safety-critical applications. In
order to build a trustworthy DRL model for aircraft separation
assurance, we propose a novel framework to provide stepwise
explanations of agent behaviors. At a high level, our framework
distills a complex DRL model into a shallow Soft Decision Tree
(SDT) and uses the distilled knowledge in SDT to provide visual
explanations of agent behaviors in each step. Specifically, the
proposed framework incorporates (1) a distillation module to
transfer knowledge from DRL policies to tree-structured policies
with clear decision paths and (2) a visualization module with a
graphical interface to provide visual explanations in real time.
With our proposed framework, the information is extracted from
the distilled SDT and illustrated with the interface. Through
extensive numerical experiments in an open-source air traffic
simulator with challenging environment settings, our results show
that the proposed framework can support explainable decision-
making for aircraft separation assurance.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has shown great
success in sequential decision-making problems with high-
dimensional and complex problem settings recently [1], [2].
Aircraft separation assurance system uses DRL to assure
aircraft safety with complex and dense traffic [3]–[5]. The
authors have developed the state-of-the-art multi-agent DRL
methods for aircraft separation assurance in structured airspace
[6]–[9]. These DRL algorithms are trained to learn compact
representations of high-dimensional aircraft states to make tac-
tical decisions. Though these methods have shown promising
performance in aircraft separation assurance, existing DRL
agents make decisions in a nontransparent way, selecting ac-
tions without providing explanations. The lack of transparency
creates major obstacles to build trust in the decision-making
process. This problem greatly limits the use of DRL algorithms
in safety-critical applications, especially when human is in the
loop.

To address the issue of nontransparency in DRL models,
Explainable Deep Reinforcement Learning (XDRL) methods
are proposed in the literature to provide explanations for agent
actions [10], [11]. One popular XDRL approach is the Soft
Decision Tree (SDT) [12], which is a combination of network
distillation and decision tree models.

SDT has a similar tree structure to the Hard Decision Tree
(HDT) [13]. While HDTs suffer from the fact that each node

only relies on one feature, each decision node in an SDT is a
one-layer neural network using all the features as input. SDTs
were originally developed for image classification. Since the
DRL models provide the states and actions as training features
and labels, SDTs can be used to replicate the DRL policies
in the supervised learning paradigm and provide insights into
understanding agent behaviors.

Despite showing great potential in explaining the agent
behaviors, current works related to SDT in DRL mainly focus
on tasks with the low-dimensional input such as CartPole and
tasks with the pixel-based input such as Mario AI Benchmark
[14], [15]. These implementations rely on either low dimen-
sionality or spatial patterns of the input, which greatly restricts
its use in other fields with high-dimensional and non-spatial
state space such as separation assurance.

In order to build a trustworthy DRL model for aircraft
separation assurance task, we propose a novel framework to
provide stepwise explanations of agent behaviors. In contrast
to the related papers, our proposed framework can provide
explainable decision-making in the complex separation as-
surance task, which helps build trust for this safety-critical
system. At a high level, our framework distills a DRL model
into a shallow SDT and uses distilled knowledge in SDT
to provide visual explanations of agent behaviors stepwise.
Specifically, the proposed framework incorporates (1) a dis-
tillation module to transfer knowledge from complex DRL
policies to tree-structured policies with clear decision paths
and (2) a visualization module with a graphical user interface
to provide visual explanations in real time. By combining them
together, the integrated framework can explain agent behaviors
by (1) extracting information from the distilled SDT about
feature importance and feature affections on actions and (2)
illustrating the extracted information with the interface. We
refer to our framework as ”Stepwise Explainable Separation
Assurance MEthod” (for short SESAME).

Our main contributions can be summarized as follows:

• We propose a novel framework to provide explainable
DRL for aircraft separation assurance task. The frame-
work can help user understand the agent decision-making
in real time.

• We introduce two original visualization methods namely
tree plot and trajectory plot to demonstrate the extracted
knowledge from tree-structured policies. The methods
can help provide visual explanations efficiently.



Fig. 1: The structure of the SESAME explanation framework. The framework observes the environment and generates the
decision path with distillation module at each time step. The decision path is fed to the visualization module. The visualization
module generates tree plot and trajectory plot to provide explanations of agent behaviors.

• We conduct extensive experiments to demonstrate the
effectiveness of our proposed framework for providing
decision explanations in aircraft separation assurance.

II. RELATED WORK

DRL has been recently explored in aircraft separation assur-
ance. In the last few years, the authors were among the first to
develop DRL models for aircraft separation assurance [6]–[9].
Proximal Policy Optimization (PPO) [16] is one of the most
popular models in separation assurance because of its high
and stable performance (e.g., [5]–[9], [17]). Deep Q-network
[18] and its variants [19] are also widely used to maintain the
safety separation (e.g., [20]–[23]). In continuous action space,
Deep Deterministic Policy Gradient (DDPG) [24] algorithm
is broadly applied to resolve conflicts between aircraft (e.g.,
[25]–[28]). However, these works train DRL model as a black
box without behavior explanations, which limits users’ trust in
these models and further restricts their use in real-world safety-
critical systems. In this work, we present a novel explanation
framework to provide explainable decision-making for aircraft
separation assurance. To our knowledge, our work is the first
to provide behavior explanations in DRL models for aircraft
separation assurance.

Past works on XDRL have explored various methods to de-
rive explanations for model behaviors. Representation learning
is applied to generate compact and explainable representations
of agent in [10], [11]. Logic rule methods are employed to
extract behavior explanations with human-readable rules from
DRL model in [29]. Neural language models are trained to
generate text explanations for agent behaviors in [30], [31].
Saliency maps can explain agent behaviors by highlighting
the input features most relevant to the decisions in [32]–
[34]. Reward decomposition method reformulates the reward
function in DRL model to provide behavior explanations with
meaningful and decomposed rewards in [35], [36]. Uncertainty
estimation methods are applied to quantitatively measure the
decision confidence and provide insights into the agent behav-
iors in [37], [38].

SDT is a promising approach to behavior explanations.
SDTs can distill the knowledge from complex DRL models

into shallow trees with decision paths, providing both clear
interpretations and comparable performances to original DRL
models. SDT was originally proposed for image classification
task in [12]. Since the DRL models provide the states and
actions as training features and labels, SDTs can be used to
replicate the DRL policies in the supervised learning paradigm.
Coppens et al. [15] distilled a SDT from a PPO network to
explain behaviors of the agent playing Super Mario game [39].
Liu et al. [40] approximated Q function with the Linear Model
U-tree to provide explanations. Silva et al. [41] discretized
the SDTs with univariate nodes to further improve the inter-
pretability. Ding et al. [14] combined a feature learning tree
with standard SDT to allow rich expressivity for explanations.
Dahlin et al. [42] proposed a collection of metrics for evalu-
ating the distilled SDTs.

Our work is fundamentally different from the above papers
in the following ways: (1) Our work focuses on aircraft
separation assurance with a complex high-dimensional input
space while the previous works on SDT mostly focus on
the tasks with simple low-dimensional input (e.g., CartPole
[14], LunarLander [41]) or tasks with pixel-based input (e.g.,
Mario AI Benchmark [15], Wildfire Tracking [43]). These
implementations depend on the low dimensionality or spa-
tial information of the input but cannot handle the tasks
with a complex and non-spatial state space. (2) The aircraft
separation assurance problem is formulated as a multi-agent
reinforcement learning problem. Each aircraft is treated as an
agent, which greatly increases the complexity of explanations
since both interactions with the environment and each other
need to be explained. But the previous works concentrate on
single-agent problem settings [14], [15]. (3) We propose two
visualization methods namely tree plot and trajectory plot to
demonstrate both detailed and precise explanations efficiently
based on extracted information from SDTs, while the related
works only illustrate the explanations with heatmaps [15] or
decision tree plots [43].

The remaining parts of the paper are organized as follows.
Section III introduces the background. In section IV, the
description of the problem is presented. Section V introduces
our solution to the problem. Section VI provides the details



of the experiments and results. Section VII summarizes our
findings and concludes the paper.

III. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) addresses the sequential
decision-making problem and its objective is to learn the
optimal policy within an environment. A Markov Decision
Process is used to model it with tuple < S,A, T ,R, γ >:

• The state space S is the set of all states in environment.
• The action space A is the set of all actions that the agents

can select.
• The state transition function T represents the probability

of going from one state to another.
• The reward function R determines the amount of reward

obtained by the agent given the state-action pair (st, at)
at time step t.

• The discount factor γ ∈ [0, 1] determines the importance
of rewards in the future. A small γ prioritizes the imme-
diate rewards and a large γ highlights the future.

The agent interacts with the environment by observing the
current state st and selecting the action at based on its policy
πt at time step t. Then the agent receives a reward rt and the
environment produces an updated state st+1. The goal is to
learn the optimal policy π∗ which maximizes the cumulative
reward. The optimal policy can be defined as:

π∗ = argmax
π

E[

T∑
t=0

(r(st, at)|π)],

where T represents the total time, π represents any policy, and
r(st, at) represents the reward given pair (st, at).

B. Soft Decision Tree

Soft Decision Tree (SDT) [12] is a classification model
which integrates the traditional decision tree with perceptrons.
Each non-leaf node k of SDT is a single-layer neural network
with weight parameter wk and bias parameter bk. Each leaf
node l learns a vector parameter ϕl to form a prediction
distribution over all possible classes as in:

Ql
c =

exp(ϕlc)∑
c′ exp(ϕ

l
c′)
,

where c′ is a possible class and c is the target class.
Given input state s and node k, the traversal probability

defined as the probability of traversing to the left child node
of node k is calculated as:

pk(s) = σ(β(swk + bk)),

where σ is the sigmoid function and β is the inverse temper-
ature parameter.

The traversal from root node to another node (e.g., a leaf
node) composes a decision path. The decision path shows
hierarchical decisions made by the SDT and can provide
behavior explanations. Each decision path has a certain path

probability P which is the overall product of all probabilities
leading from root to the last node in this traversal.

The loss function consists of the entropy loss for classi-
fication and a regularization loss to penalize unequal usage
among nodes. The entropy loss calculates the entropy between
prediction distribution Q and target distribution T in each leaf
node l, weighted by its path probability P l(s):

L(s) = −log(
∑
l∈L

P l(s)
∑
c

TclogQ
l
c),

where L is the set of all leaf nodes in the tree.
The regularization loss C is the cross-entropy between the

current distribution αk and the desired distribution α′
k of all

non-leaf nodes in the tree:

C =
∑
k∈K

−λk(α′
klog(αk) + (1− α′

k)log(1− αk)),

where

αk =

∑
s P

k(s)pk(s)∑
s P

k(s)
.

Here K is the set of all non-leaf nodes. P k(s) is the path
probability from root node to node k. pk(s) is the traversal
probability of k. λ is a hyper-parameter to determine the
strength of the penalty.

IV. PROBLEM FORMULATION

In en route sectors, aircraft separation assurance is per-
formed among all aircraft to maintain safety separation. Our
proposed framework is used to provide behavior explanations
for all aircraft. In this work, we use BlueSky [44] as the air
traffic simulator. We evaluate the performance of proposed
explanation framework on several challenging case studies
with multiple intersections and high-density air traffic.

The objective of the case studies is to provide explanations
of decisions to maintain safe separation between aircraft and
resolve conflicts for all aircraft in the sectors. The proposed
explanation framework needs to understand both the ownship
information and the coordination information of other potential
intruders to provide correct explanations.

Three different case studies are investigated in this work.
Each use case is a dynamic simulation environment where
the aircraft enter the sector stochastically. The setting further
increases the difficulty of behavior explanations because now
the framework needs to understand the strategies based on the
varying environment information in real time.

Multi-Agent Reinforcement Learning Formulation. We
formulate the aircraft separation assurance problem as a deep
multi-agent reinforcement learning problem by treating each
aircraft as an agent. The state space, action space, terminal
states, and reward function are defined as follows.

1) State Space: The state contains all the information an
agent has for decision-making. The functions of communi-
cation and coordination between agents are implemented in
our work because of our cooperative multi-agent setting. The
state information contains the information of both ownship
and intruders in the sector. Specifically, the following features



are included: current location, speed, acceleration, route iden-
tifier, distance to sector exit, distance between ownship and
intruders, and distance to intersections.

2) Action Space: Action space contains all actions the
ownship can select. Agent is allowed to select action every 12
seconds because radar surveillance updates en route position
every 12 seconds. Three actions are provided in action space:

At = [a−, a0, a+].

Here a− refers to deceleration, a0 refers to maintaining the
current speed, and a+ refers to acceleration.

3) Terminal State: In each simulation, aircraft will be
generated in the sector until the maximum allowed number
of aircraft is reached. The simulation will terminate when all
aircraft have reached their individual terminal state, obtained in
two ways: (1) exiting the sector without conflict, (2) violating
the loss of separation with conflict.

4) Reward Function: Identical reward function is defined
for all agents to encourage the cooperation. The system penal-
izes the conflict with a negative reward. The penalty is local so
only the two or multiple aircraft in conflict will get penalized
but the other agents will stay unaffected. Specifically, a conflict
is defined that the distance between two aircraft is less than 3
nautical miles. The reward function for conflict is defined as
follows:

Rc(s) =


−1 if dco < 3,

−α+ δ · dco if 3 ≤ dco < 10,

0 otherwise.

Here dco is the distance from the ownship to the closet
intruder in nautical miles. α and δ are scale parameters which
ensure the reward is between -1 and 0.

We also introduce the penalty of speed changes, which
should be avoided unless necessary in the real world:

Rs(a) =

{
0 if a = a0,

−ψ otherwise,

where ψ is a hyper-parameter implemented to minimize the
number of speed changes.
Rc(s) and Rs(a) together guide the agent to learn a policy

whose goal is to maintain safety separation with a small num-
ber of speed changes. We capture our goals in the following
reward function:

R(s, a) = Rc(s) +Rs(a).

V. SOLUTION APPROACH

Our objective is to provide explanations of the DRL agent
behaviors in aircraft separation assurance. In order to achieve
this goal, we propose an explanation framework to pair
with the given DRL model. The framework consists of two
components, namely, the distillation module and visualization
module. The distillation module is a SDT transferring knowl-
edge from complex DRL policies to tree-structured policies

with clear decision paths. The visualization module provides
visual explanations with a graphical user interface efficiently.
We describe two modules in the following subsections and
then show how they are integrated together as the SESAME
framework. Finally, we discuss three techniques to efficiently
improve the performance of proposed framework.

A. Distillation Module

This module distills a DRL model into a SDT. The DRL
model controls the agent to perform aircraft separation as-
surance task. A dataset containing transitions generated by
the DRL model is used to train the SDT model. The dataset
consists of state-action pairs (s, a). a is the predicted action
for state s from DRL model.

SDTs are fitted with transitions in the training set using su-
pervised learning. During the execution phase, SDT generates
a decision path for input state s. The feature weights in SDT
and the decision path are then utilized in visualization module
to support the behavior explanations.

B. Visualization Module

The distillation module is not sufficient to help users under-
stand the agent behaviors because there is too much redundant
information in the SDT model. Therefore, we implement a
visualization module that provide explanations efficiently. The
visualization module provides users the explanation informa-
tion extracted from the distillation module with a graphical
interface. Specifically, the visualization module contains (1) a
tree plot showing feature weights of each node and decision
path in a tree-structured image and (2) a trajectory plot
showing all aircraft flying along their routes in the structured
airspace with precise explanations.

1) Tree Plot: Each non-leaf node in SDT processes all input
features with a one-layer network, so the feature weights give
the information on how features influence the decision in one
node. The features weights and output values of nodes along
the decision path can provide the behavior explanations on
how the hierarchical decision is made.

The tree plot illustrates feature weights of all SDT nodes in
a tree structure. Feature weight of each node is visualized as
a heatmap. Decision path is demonstrated with a dense black
arrow connecting nodes along the decision path.

The explanation information is projected into the tree plot
following these rules:

• Each feature weight is represented as a colored square in
the heatmap.

• Feature weights of the same aircraft is drawn in the same
row of heatmap.

• The higher the absolute value of weight is, the larger the
size and the deeper the color is for the square. This also
implies that the feature is more influential on the decision
in the current layer.

• A red square means the increase in the feature value
will increase the node output and a blue one means the
increase in value will decrease the node output.



2) Trajectory Plot: While the tree plot gives a comprehen-
sive explanation of behaviors, the trajectory plot only shows
the most influential features for decision-making with both
visual symbols and text. The simple structure of trajectory
plot provides users with the most important information to
understand the agent behaviors.

There are three main components in a trajectory plot: (1)
all aircraft flying along routes, (2) highlighted influential
factors, and (3) text boxes showing action information and
ownship behavior explanations. Following rules are applied to
demonstrate vital information with the trajectory plot:

• For each node in decision path, the feature whose weight
has the largest absolute value and the aircraft which this
feature belongs to will be selected as important feature
and important aircraft. For an SDT with depth n, there
will be n important features and n important aircraft for
the trajectory plot. Their icons will be emphasised in the
trajectory plot.

• Different symbols are used to emphasize features. For
example, size of important aircraft will be increased.
Distance feature will be drawn as an orange solid line.

C. Integration of Two Modules

To provide explanations of agent behaviors for aircraft
separation assurance, we integrate the distillation module and
visualization module together. We illustrate the architecture of
the integrated framework in Figure 1.

At each time step, one forward pass for input state s
is executed in distillation module. The decision path p is
generated and transited to the visualization module. Based on
the feature weights and decision path, visualization module
draws tree plot and trajectory plot to provide users with the
explanations of agent behaviors.

D. Efficiently Implementing SDT

To further improve model performance, we discuss tech-
niques that boost the performance of SDT: use of batch
normalization, removal of regularizations and label balancing.

a) Batch Normalization: Batch normalisation (BN) [45]
is a technique to normalize layer input in neural networks.
BN operator subtracts the mean value of mini-batch and sub-
sequently divides the centered input by the standard deviation
of mini-batch during training. In our problem setting, feature
scales vary greatly and BN helps normalize the input and
provide interpretations. We implement a BN layer prior to the
root of SDT, which means the input of each node has been
normalized.

b) Removal of unnecessary regularizations: In original
SDT, β is an inverse temperature parameter to avoid very soft
decisions and L1 regularization is used to avoid overfitting.
We found that β and L1 regularization not only harm the
performance of SDT but also decrease the training speed. The
reason may be that SDTs in our setting can learn deterministic
decisions without β and the sparse parameters brought by L1
regularization harms the performance of shallow tree model.
So we remove both of them.

c) Label Balancing: The action distribution of transitions
in training set is highly skewed because the aircraft maintain
the speed in most situations and speed changes are discouraged
by the reward function. We enlarge the training set and
balancing its action distribution to provide enough samples
of speed changes for model training.

VI. NUMERICAL EXPERIMENTS

A. Simulator

We utilize the BlueSky air traffic simulator [44] built in
Python to evaluate the performance of our proposed SESAME
framework. We can easily obtain the state information of all
aircraft with the BlueSky simulator.

B. Case Studies

In this work, we consider three case studies A, B, and C
with different routes and intersections as shown in Figure 2.
The termination of simulations is when all aircraft in the
airspace have reached their terminal states. Our goal is to distill
DRL models into SDTs and provide stepwise explanations of
aircraft behaviors in real time with the SESAME framework.
These are very challenging cases to explain since DRL agents
must learn a strategy and the same behavior could result from
various reasons based on different situations. At the same
time, DRL model will provide speed advisories to maintain
separation assurance and focus on the goal that every aircraft
exits the sector without conflict.

In our settings, the same SESAME framework and DRL
model are implemented on each aircraft. Each aircraft selects
its own desired speed with the DRL model. The implemented
SESAME framework provides explanations for the selected
action. This decentralized execution setting increases the prob-
lem complexity since the explanation framework need to
consider how the cooperation among aircraft influences the
agent behaviors.

C. The DRL Model

In this work, SDTs are distilled from two state-of-the-art
DRL models for aircraft separation assurance in structured
airspace: D2MAV-NC [7], D2MAV-A [9]. The effectiveness of
our frameworks is evaluated on both DRL models to validate
its generalization. This setting increases the difficulty of the
problem since SESAME framework needs to generalize well
in different DRL models to provide explanations.

D2MAV-NC utilizes an actor-critic model that incorporates
the PPO loss function to provide speed advisories for sepa-
ration assurance with a fixed number of intruders. We follow
the default settings in [7].

D2MAV-A integrates an actor-critic model and an attention
network to maintain safety separation among a variable num-
ber of intruders. We follow the default settings in [9]. To make
it comparable to D2MAV-NC, we fix the number of intruders
in D2MAV-A to 7 because the number of intruders is smaller
than or equal to 7 in most samples.



Fig. 2: Case Studies for evaluation in the BlueSky simulation environment.

Fig. 3: Tree plot for SESAME framework using SDT-NC-BN with depth 3 for case A in one step. All non-leaf nodes process
the same input state but assign different weights to features. Feature weight of each node is visualized as a heatmap. Each row
in heatmap represents all features of one aircraft. The first row is for the ownship O. The other rows are for the five intruders
I1,...,I5 sorted by distance to the ownship in ascending order. Each column represents value of the same feature for all aircraft.
The features are distance to goal dg, current speed v, route identifier r, current acceleration ac, distance between ownship and
the intruder da, distance between ownship and the intersection do, and distance between intruder and intersection di. Each
colored square represents a feature weight. The higher the absolute value of weight is, the larger the size and the deeper the
color is for the square. Red represents a positive influence and blue represents a negative influence. The dense black arrows
represent the direction of decision path. Each leaf node gives a predicted action. Acc stands for acceleration. Hold stands for
maintaining the current speed. Dec stands for deceleration.

D. Evaluation of model fidelity

We consider the SDT in our distillation module as a function
approximator for the DRL model. We evaluate whether the
predictions of distilled SDT model match those of the original

DRL model. Specifically, we measure it with fidelity metric,
which is defined as:

P (aSESAME = aDRL),



where a is output action based on model prediction. The
subscripts stand for different models. Since fidelity measures
the extent to which the decisions in SDT corresponds to those
in the original DRL model, a higher fidelity score means that
the behaviors of SDT and DRL models match better.

We report the fidelity scores of distilled SDT models with
different depths for three case studies in Table I, Table II,
and Table III. Each row shows results of a tree model with
different tree depths. Each column shows results of 6 different
models with the same depth. For evaluation, new transitions
of 100 episodes are generated with DRL models. We compare
the predicted actions from SDTs in these states with output
actions from DRL models. The random policy baseline is
33.33%. To provide more comprehensive comparisons, we also
report fidelity scores of HDTs as baseline. HDTs and SDTs are
trained with the same training set. SDTs trained with D2MAV-
NC and D2MAV-A are named as SDT-NC and SDT-A. SDTs
with a BN layer are named as SDT-NC-BN and SDT-A-BN.
HDTs trained with D2MAV-NC and D2MAV-A are named as
HDT-NC and HDT-A.

TABLE I: Fidelity Scores(%) in Case A

Model Depth

1 2 3 4 5 6

SDT-A 54.22 77.39 79.60 80.85 81.05 81.12
SDT-A-BN 55.84 79.44 82.64 84.48 85.76 86.64
SDT-NC 60.73 88.21 90.05 92.03 91.81 92.17
SDT-NC-BN 61.11 89.29 92.62 93.77 94.83 95.49
HDT-A 51.01 67.95 73.12 76.58 78.07 79.62
HDT-NC 57.83 73.93 76.08 82.35 82.95 84.42

TABLE II: Fidelity Scores(%) in Case B

Model Depth

1 2 3 4 5 6

SDT-A 76.57 85.77 86.26 85.71 85.82 84.36
SDT-A-BN 77.53 87.97 90.42 90.92 92.22 92.21
SDT-NC 85.40 87.75 90.30 91.45 90.08 92.23
SDT-NC-BN 85.72 87.56 93.17 94.66 95.93 96.61
HDT-A 74.53 79.11 85.15 88.78 89.36 90.49
HDT-NC 74.90 78.74 84.30 85.32 87.33 89.49

TABLE III: Fidelity Scores(%) in Case C

Model Depth

1 2 3 4 5 6

SDT-A 52.63 70.72 76.09 78.01 79.23 81.85
SDT-A-BN 54.24 71.91 77.09 80.30 84.21 85.90
SDT-NC 63.70 92.72 95.20 95.78 96.56 96.61
SDT-NC-BN 63.51 92.94 96.09 97.03 97.08 97.16
HDT-A 43.53 56.68 62.19 65.49 69.29 74.44
HDT-NC 65.83 86.42 88.71 91.36 92.00 92.35

Based on results in the same column, we find that the
proposed SESAME framework has higher fidelity scores than
baseline HDTs or random policy given the same depth in
almost all cases except for case B with depth 4, 5, 6. This

shows that our proposed framework can match the behaviors
of original DRL models better than HDTs and random policy.
Since the network in each leaf needs to generalize for a huge
number of different input states, it is not unexpected that the
tree policy may not cover the DRL model perfectly. The results
also show that our framework generalizes well with different
DRL models and BN helps improve model fidelity.

Based on results in the same row, we notice that a tree with
more layers tend to perform better in terms of model fidelity
given the same true structure, which implies that a deeper tree
can match the DRL model better. This should relate to the fact
that deeper trees have the capacity to divide the input space
into more fine-grained cases and handle them better. However,
the deeper the tree is, the more complex the tree policy is and
the harder it is to explain. So this also shows trade-off between
model fidelity and interpretability.

While SDTs achieve high fidelity scores in this work,
we notice that the outputs of SDTs in some transitions are
different from those of the DRL model. In these cases, our
SESAME framework will notify the users. Additionally, future
work will explore combining explainable tree models with
other XDRL methods such as saliency maps to address the
disagreement between SDTs and DRL models.

E. Explanations with Tree Plot

SDTs rely on hierarchical decisions along the decision path.
Non-leaf nodes focus on different input features. The weights
of non-leaf nodes and the decision path can provide the
explanations on which features influence the agent behaviors.
In this subsection, we demonstrate how tree plot can provide
behavior explanations. A tree plot for model SDT-NC-BN with
depth 3 on case A is drawn in Figure 3.

In the heatmap of root node, we see that the square at
cell (2,5) has the largest size in deep red. Since that square
represents feature of distance between ownship and the closest
intruder, the size and color show that root puts the highest
positive weight on this feature. This means root node focuses
on the positive influence of the distance between ownship and
the closest intruder. The distance to intruders is vital because it
is more likely that ownship may collide with an intruder when
they are at a small distance. Compared with distant intruders,
potential collision with the closest one is the most urgent. As
value of this feature increases, it is more likely to traverse to
node 2, which is its left child node.

Checking the nodes along the decision path, we find that
node 2 focuses on the the acceleration information of the
closest intruder at cell (2,4). The right child node namely node
3 focuses on the positive influence by the distance to goal of
the ownship. The different focuses between node 2 and node
3 shows that the child nodes concentrate on different features
based on the output of its parent node.

Explaining how non-leaf nodes in the bottom layer lead to
different actions is vital. This can be achieved by examining
the heatmaps of nodes in the bottom non-leaf layer. Node
4 on the decision path highlights the positive influence by
distance from the closest intruder to intersection. So it is more



Fig. 4: Trajectory plot for SESAME framework using SDT-NC-BN with depth 3 in case A. All aircraft are drawn as triangles
by default. Ownship is in light green and intruders are in deep green. In this case the important features are (1) The distance
between ownship O and the closest intruder I1, (2) the acceleration of the closest intruder, and (3) distance between the closest
intruder and the intersection. The distance features are highlighted as orange solid lines and the accelerating aircraft is drawn
as a diamond. The explanations and speed advisory are provided in text as well.

likely that acceleration action will be selected if the distance
from the closest intruder to intersection becomes larger. This
makes sense because ownship should accelerate to pass the
intersection and avoid the collision when the closest intruder
is still far from the intersection.

After we make explanations for nodes along the decision
path, we give a summary explanation of the entire tree. At the
root node, the left path rules out the deceleration action and
the right path excludes the acceleration action. Each node in
bottom layer can only select whether to maintain the speed or
not. No bottom non-leaf node has access to both deceleration
and acceleration actions.

F. Explanations with Trajectory Plot

In this subsection, we show how the trajectory plot provides
precise behavior explanations with only important information.
A trajectory plot for DRL model SDT-NC-BN with depth 3
on case A is drawn in Figure 4. Figure 4 and Figure 3 show
the explanations for the same transition.

The ownship near the intersection accelerates in this exam-
ple. The important features are identified as the features with
the highest absolute value in each node along the decision
path. The important features in this transition are (1) distance
between ownship and the closest intruder, (2) acceleration
of the closest intruder, and (3) distance between the closest
intruder and intersection. These features can be extracted from
the model weights of SDT. We also have introduced the
importance of these features in the previous subsection. The
distance features are highlighted with an orange solid line and
the acceleration feature is emphasized as a diamond in the
plot. Text explanations are also listed in separate text boxes
on the trajectory plot. A text box in the low right corner shows
the speed advisory.

Compared to the tree plot which provides a comprehensive
and detailed explanation, trajectory plot illustrates a precise
and efficient explanation with only important information.

Integrating two plots together, the SESAME framework pro-
vides behavior explanations with both important information
in trajectory plot and supplemental details in tree plot.

G. Evaluation of SDT Controller

TABLE IV: Performance of SDT in case A

Model Depth

1 2 3 4 5 6

SDT-A 17.78 26.20 23.52 24.38 25.94 26.38
SDT-A-BN 19.34 26.82 26.04 29.36 28.67 29.07
SDT-NC 23.84 21.12 23.71 25.66 26.37 26.46
SDT-NC-BN 25.60 29.00 29.02 29.32 29.68 29.64
HDT-A 23.52 25.68 17.08 15.24 23.92 19.95
HDT-NC 22.06 23.16 22.72 23.10 21.90 22.30

TABLE V: Performance of SDT in case B

Model Depth

1 2 3 4 5 6

SDT-A 25.52 25.46 25.52 25.34 25.26 25.56
SDT-A-BN 25.94 25.48 24.96 25.58 25.98 26.64
SDT-NC 27.06 27.18 26.68 27.32 27.72 26.12
SDT-NC-BN 28.12 25.84 29.56 28.78 29.80 29.90
HDT-A 25.36 25.02 24.94 24.27 23.57 25.18
HDT-NC 25.18 26.32 27.14 26.78 27.24 26.73

TABLE VI: Performance of SDT in case C

Model Depth

1 2 3 4 5 6

SDT-A 17.19 20.45 18.66 19.94 19.31 23.33
SDT-A-BN 22.45 19.76 22.27 21.85 24.64 24.28
SDT-NC 19.70 22.46 26.34 26.38 26.26 27.76
SDT-NC-BN 25.64 21.83 26.28 27.70 28.50 28.44
HDT-A 18.70 13.09 13.68 15.72 13.98 14.33
HDT-NC 20.14 20.74 18.54 18.10 20.66 19.30



Since the behaviors of distilled SDTs match those of the
DRL models well, we evaluate whether the distilled SDTs can
directly control the agent for the separation assurance task
instead of only providing explanations. Specifically, we use
the distilled SDTs as controllers for the aircraft separation
assurance task. We define the performance score as the number
of aircraft exiting the sector without conflict among all 30
aircraft. We report the average performance of 50 episodes
for three cases in Table IV, Table V, and Table VI. The HDT
controllers are used to provide a fair comparison as baseline
models in this experiment. The performances of random policy
baseline are 12.20, 19.76, and 12.05 in case A, B, and C.
The DRL models can achieve an optimal performance with
no collision in these three cases.

Results show that SDT controllers work better than random
policy and HDTs in all cases. The reason may be that SDT
can learn a hierarchical structure to make decisions relying on
all features at the same time. SDTs work better in case A and
B than in case C because case C has a more complex structure
with three routes and three intersections.

We notice that in some cases (e.g., SDT-NC-BN with depth
2 in case A, SDT-NC-BN with depth 3 in case B) SDT can
gain near-optimal safety performance with only 2 or 3 layers.
This implies the potential for SDTs to both make decision and
provide explanations in safety-critical systems.

VII. CONCLUSIONS

The behavior explanation of DRL models for aircraft sep-
aration assurance tasks with complex and high-dimensional
state space is an extremely difficult problem. In this paper, we
propose an explanation framework to distill the complex DRL
models into SDTs and visualize the information extracted from
the model weights along the decision path to provide behavior
explanations. This framework can provide visual explanations
of agent behaviors for aircraft separation assurance task in a
structured en route airspace sector.

We demonstrate the effectiveness of our framework on
separation assurance problem with extensive experiments. We
show that the behaviors of distilled SDTs match those of
original DRL models well. We also show that the proposed
framework can provide behavior explanations by visualizing
learned features. Furthermore, we demonstrate the general-
ization of our framework by distilling SDT policies from
two different state-of-the-art DRL-based separation assurance
models. Finally, we show that the distilled SDTs can be
used directly as the controllers to perform safety separation
assurance with a good performance.

In summary, our proposed framework can explain the be-
haviors of DRL-based agent for aircraft separation assurance.
This framework will be useful in real-world safety-critical
systems where the model explanation is of high importance.
The promising results encourage us to further explore the
effectiveness of the framework and its extensions for other
safety-critical applications in the future.
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