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ABSTRACT Obstacle avoidance for small unmanned aircraft is vital for the safety of future urban air
mobility (UAM) and Unmanned Aircraft System (UAS) Traffic Management (UTM). There are a variety
of techniques for real-time robust drone guidance, but numerous of them solve in discretized airspace and
control, which would require an additional path smoothing step to provide flexible commands for UAS.
To deliver safe and computationally efficient guidance for UAS operations, we explore the use of a deep
reinforcement learning algorithm based on Proximal Policy Optimization (PPO) to lead autonomous UAS
to their destinations while bypassing obstacles through continuous control. The proposed scenario state
representation and reward function canmap the continuous state space to continuous control for both heading
angle and speed. To verify the effectiveness of the proposed learning framework, we conducted numerical
experiments with static and moving obstacles. Uncertainties associated with the environments and safety
operation bounds are investigated in detail. Results show that the proposed model is able to provide accurate
and robust guidance and resolve conflict with a success rate of over 99%.

INDEX TERMS Continuous control, deep reinforcement learning, UAS obstacle avoidance, uncertainty.

I. INTRODUCTION
Ranging from delivery drones to electrical vertical take-off
and landing (eVTOL) passenger aircraft, modern unmanned
aircraft systems (UAS) are able to accomplish a variety of
tasks efficiently, including weather monitoring, surveillance,
goods delivery, disaster relief, search and rescue, traffic mon-
itoring, air transportation, and videography [1], [2]. Urban
air mobility (UAM) is likely to occur in urban regions near
airports or buildings. Thus, it is expected that UAS can use
onboard detect and avoid systems to keep away from other
traffic, terrain, hazardous weather, and natural and man-made
obstacles without constant human intervention [2].

Numerous mathematical models of aircraft conflict res-
olution have been developed in the literature. Research
efforts can be divided into centralized approaches and
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decentralized algorithms. Centralized algorithms can be
based on semidefinite programming [3], nonlinear program-
ming [4], [5], mixed-integer linear programming [6], [7],
[8], [9], mixed-integer quadratic programming [10], sequen-
tial convex programming [11], [12], second-order cone pro-
gramming [13], evolutionary techniques [14], [15], and
particle swarm optimization [16]. In these centralized meth-
ods, the aim is to achieve the global optimum for all aircraft.
The challenge is that with the increase in the number of air-
craft, the computation cost of these methods grows exponen-
tially. Among the decentralized methods, Markov Decision
Process (MDP) allows the formalization of the conflict res-
olution problem. Reinforcement Learning (RL) is a promis-
ing solution to aircraft traffic management, but mostly uses
traditional algorithms [17]. The collision avoidance systems
(CAS) problem is modeled as a partially observable Markov
Decision Process (POMDP) in the next-generation airborne
collision avoidance system (ACAS X) and has been extended
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to unmanned aircraft, named ACAS Xu [18]. Both ACAS
X and ACAS Xu use Dynamic Programming (DP) to deter-
mine the expected cost of each action [19], [20]. Decompo-
sition methods and DP are combined for optimizing collision
avoidance with multiple threats in [21]. The traditional RL
algorithms require a fine discretization scheme of state space
and finite action space. Discretization potentially reduces
safety by adding discretization errors and cannot provide
flexiblemaneuver guidance for UAS. In addition, discretizing
large airspace implies a high computation demand and can
be time-consuming. Tree search based algorithms [22], [23]
are also applied to CAS problems using MDP formulation
which does not involve state discretization. But they typically
require high onboard computation time to accommodate the
continuous state space.

The large and continuous state and action spaces pose
challenges to conflict resolution problems using reinforce-
ment learning. Recently, Deep Reinforcement Learning
(DRL) is studied to solve this challenge by applying the
deep neural network to approximate the cost and the opti-
mal policy functions. Development of DRL algorithms,
e.g., Policy Gradient [24], Deep Q-Networks (DQN) [25],
Double DQN [26], Dueling DQN [27], Deep Determinis-
tic Policy Gradient (DDPG) [28], Asynchronous Advantage
Actor-Critic (A3C) [29], and Proximal Policy Optimization
(PPO) [30] has increased the potential of automation. In [31],
DQN is used to perform corrections for an existing colli-
sion avoidance strategy to take into consideration the dense
airspace. In [32], the feasibility of using algorithms based on
DQN in UAV obstacle avoidance is verified. It is concluded
in [33] that DQN can outperform value iteration both in terms
of evaluation performance and solution speed when solving
a UAV collision avoidance problem. The performance of the
DQN algorithm in avoiding single aircraft to multiple aircraft
is investigated in [34]. A novel deep multi-agent reinforce-
ment learning framework based on PPO is proposed in [35]
to detect and avoid conflicts amongmultiple aircraft in a high-
density and dynamic sector under uncertainty. The DRLwork
mentioned above is in continuous state and discrete action
space.

There has been less progress on utilizing DRL to solve
UAS conflict resolution with continuous control. Authors
in [36] proposed an approach inspired by Deep Q-learning
and Deep Deterministic Policy Gradient algorithms and it
can avoid conflicts, with a success rate of more than 81%,
in the presence of traffic and various degrees of uncertainties.
A generic framework that combines an autonomous obstacle
detection module and an actor-critic based reinforcement
learning (RL) module is developed to provide reactive obsta-
cle avoidance policy for a UAV in [37]. Experiments in [30]
test the performance of PPO on a set of benchmark tasks,
including Atari game playing and simulated robotic loco-
motion, and show that PPO outperforms other online policy
gradient approaches. PPO appears to be a favorable balance
between sample complexity, simplicity, and wall-time. Thus,
a PPO-based conflict resolution model is valuable for UAS

traffic management, which is the major motivation of this
study.

To the best of the authors’ knowledge, this is the first
study to develop a DRL approach based on PPO algorithm
to enable the UAS to successfully navigate in continuous
state and action spaces. Calculating in continuous space has
the advantage of eliminating the requirement to discretize
the state space or smooth the results for postprocessing. The
proposed model with the optimal policy after offline training
can be utilized for UAS real-time online trajectory planning.
The main contributions of this paper are as follows:
• A PPO-based framework has been proposed for UAS
to avoid both static and moving obstacles in continuous
state and action spaces.

• A novel scenario state representation and reward
function are developed and can effectively map the
environment to maneuvers. The trained model can gen-
erate continuous heading angle commands and speed
commands.

• We have tested the effectiveness of the proposed learn-
ing framework in the environment with static obstacles,
the environment with static obstacles and UAS position
uncertainty, and the deterministic and stochastic envi-
ronments with moving obstacles. Results show that the
proposed model can emit accurate and robust guidance
and resolve conflict with a success rate of over 99%.

The remainder of this paper is organized as follows. The
backgrounds of Markov Decision Process and Deep Rein-
forcement Learning is introduced in Section II. Section III
presents the model formalization of UAS conflict resolution
in continuous action space as a Markov Decision Process.
In Section IV, we conduct numerical experiments to evaluate
the effectiveness of the proposed approach to allow the UAS
to learn to prevent conflicts. Section V summarizes this paper.

II. BACKGROUND
This section provides an overview of Markov Decision Pro-
cess (MDP) and Deep Reinforcement Learning (DRL).

A. MARKOV DECISION PROCESS (MDP)
Since the 1950s, MDPs [38] have been thoroughly explored
and benefitted a variety of fields [39], [40], [41], including
robotics [42], [43], automatic control [44], manufacturing,
and economics. In an MDP, an agent selects an available
action a depending on the current state s at each time step.
Then, the agent would move to a new state s′ with certain
transition probability at the next time step and receives a
corresponding reward r .

Mathematically, an MDP is defined by a tuple, M =

(S,A, T , r, γ ), where S is a finite set of states consisting
of all the possible states, A is the action space consisting
of all the actions that the agent can select, T (st+1|st , at ) is
the transition function describing the probability of trans-
ferring to state st+1 under the current state st and action
at , r(st , at , st+1) is the reward function which determines
the immediate reward (or expected immediate reward) for
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transitioning to state s′ by taking the action a at state s. For
simplicity of notation, we denote rt as the immediate reward
at the time step t and Rt as the total discounted reward from
time-step t forwards, and γ ∈ [0, 1] is the discount factor
which decides the importance of future rewards. With a small
γ (close to 0), the agent cares for the immediate reward. With
a large γ (close to 1), the agent considers future rewards with
greater weight. Also, using a discount factor below 1 helps
the cumulative reward to converge.

The policy π in anMDP can be stochastic or deterministic.
A stochastic policy is amapping from the state to a probability
distribution over actions,

π : S → Prob(A) (1)

The output of a deterministic policy is one specific action,

π : S → A (2)

An MDP aims to find an optimal policy π∗ that, starting
from any initial state, maximizes the expected cumulative
rewards:

π∗ = argmax
π

E[Rt |π ]

= argmax
π

E[
T∑
t ′=t

γ t
′
−tr(st ′ , at ′ )|π ] (3)

where T is the final time step when the agent reaches the
terminal state.

AnMDPusesQ-function and value function to evaluate the
performance of the learning agent. The optimal Q-function
Q∗(s, a) denotes the maximum expected cumulative reward
that the agent obtains as it starts from state s, selects action a
and subsequently behaves optimally. Thus,Q∗(s, a) indicates
how good a certain action a is for the agent when it is at state
s. The optimal value function V ∗(s) represents the maximum
expected cumulative reward if the agent starts from state s,
which is calculated as the maximum of Q∗(s, a) over the
available actions at state a:

V ∗(s) = max
a
Q∗(s, a), ∀s ∈ S (4)

B. DEEP REINFORCEMENT LEARNING
Reinforcement learning [45] is a promising technology to
resolve the MDP problem. By leveraging deep learning, deep
Reinforcement Learning (DRL) has recently shown great
success in games such as Atari games [46], [47], game
of GO [48], and Starcraft [49]. Deep reinforcement learn-
ing can generally be categorized into value-based learning
[28], [46] and policy-based algorithm [29], [30], [50].
A policy-based DRL algorithm is utilized in this study to
produce policies for the learning agent. The policy-based
algorithm ismore effective than a value-basedDRL algorithm
in high-dimensional or continuous action spaces and has the
capacity to learn stochastic policies, which is beneficial when
the environment contains uncertainty.

In the policy-based RL algorithm, function approximator
such as the neural network is utilized to approximate the

policy π (s). The approximated policy takes the current state
as the input and outputs the probability of each action for
discrete action space or a distribution over actions for con-
tinuous action space. After each episode τ , the parameters
of the function approximation are updated towards larger
cumulative reward using gradient ascent:

∇θJ (πθ ) = E
τ∼πθ

[
T∑
t=0

∇θ logπθ (at |st)Rt

]
(5)

where J (πθ ) represents the expected cumulative reward of
the policy π parameterized by θ , πθ (at |st ) represents the
probability of choosing action at at state st , and Rt represents
the cumulative reward received by the agent for the remaining
time steps in the episode τ . Eq. (5) aims to decrease the
probability of selecting an action that results in a lower return
and increase the probability of the actions that results in a
higher reward. However, one challenge is that the variance of
the cumulative reward could be high, which makes it hard
for the algorithm to converge. To address this challenge,
researchers develops an actor-critic algorithm [45] where a
critic function, V (st ), is proposed for the approximation of
the value function V πθ (st ) under policy πθ . After subtract-
ing the critic function V (st ), the expectation of the gradi-
ent remains unchanged, and the variance of the policy is
decreased significantly:

∇θJ (πθ ) = E
τ∼πθ

[
T∑
t=0

∇θ logπθ (at |st) (Rt − V (st ))

]
(6)

where V (st ) is also updated to approximate V πθ (st ).

III. MARKOV DECISION PROCESS FORMULATION
In this study, the UAS and intruders are treated as a point
mass. The developed conflict resolution algorithm aims to
discover the shortest route for a UAS to reach its destina-
tion without conflicts with other UAS and static obstacles.
Leading the UAS to its goal is a discrete-time stochastic
control process and is well suited to the formalization of
a Markov Decision Process (MDP). The MDP formulation
is introduced in the following subsections by describing its
state representation, action space, terminal state, and reward
function. TheMDP formulation is developed in this work and
the authors are not aware of any other work with the same
formulation in the open literature. In this study, a deep rein-
forcement learning approach, proximal policy optimization
(PPO) algorithm proposed in [30], is adopted. The details of
PPO are also introduced in this Section.

A. STATE REPRESENTATION
The agent gains knowledge of the environment from the state
of the formulated MDP. The state should provide an agent
with all the information required to take optimal actions. The
agent’s state at time t is denoted by st . When querying the
deep neural network, all of the parameters are normalized.

We divide st into two parts, that is st = [s0t , s
1
t ], where

s0t includes the information that is associated with the agent
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itself and the destination, and s1t includes the information that
is associated with the environment, e.g., obstacles. We let
wt represent the information of the environment (includ-
ing moving/static obstacles in this study) and set s1t =
[w1

t ,w
2
t , . . . ,w

n
t ]. w

i
t indicates the information of obstacle i.

To improve the efficiency of training the DRL algorithm, the
state is transformed by following the robot-centric parameter-
ization in [51], where the origin of the coordinate system is
the agent’s location and the x-axis points toward the agent’s
goal. Subscripts x and y denote x and y coordinates.

1) STATE REPRESENTATION FOR STATIC
OBSTACLE AVOIDANCE
In the simulations of static obstacle avoidance,

s0t = [dg, vx , vy] (7)

where dg is the agent’s distance to goal, vx , vy represent the
agent’s velocity. The features of the obstacle i include,

wit = [Piy, di] (8)

where Piy denotes the obstacle i’s position in y-axis and di
denotes the distance between the agent and the center of
the obstacle i. Piy intends to encourage the agent to discover
the global optimal solution. For instance, when the agent
approaches the obstacle, a positive value of Piy indicates that
the agent is on the right side of the line passing the center of
the obstacle and the destination, and thus it is suggested to
turn a small angle counterclockwise. We note that v and P are
vectors in the transformed coordinate system.

2) STATE REPRESENTATION FOR MOVING
OBSTACLE AVOIDANCE
Regarding moving obstacle avoidance, the position of the
destination, (gx , gy), is added to s0t ,

s0t = [dg, vx , vy, gx , gy] (9)

The information of intruder i, wit is represented by,

wit = [Pix ,P
i
y,V

i
x ,V

i
y, di,V

i
ref x
,V i

ref y
] (10)

where Pi denotes the location of the intruder i, V i denotes
the velocity of the intruder i, di denotes the distance between
the agent and the intruder i, and V i

ref denotes the velocity
of the agent relative to the intruder i. We note that v, g,
P and V are vectors in the transformed coordinate system.
UAS can obtain information about the moving obstacle in
several ways. For example, some UAS may be equipped with
ADS-B system and can communicate with the base station
or neighboring UAS for state sharing. Another way is to use
the radar system (both onboard and ground base) to detect
and track moving obstacles. Finally, for some scenarios, UAS
can use the onboard cameras, terrains, onboard avionics, and
algorithms to locate and track the environments.

B. ACTION SPACE
1) ACTION SPACE FOR STATIC OBSTACLE AVOIDANCE
AND STOCHASTIC INTRUDER AVOIDANCE
In the implementations of static obstacle avoidance and
stochastic intruder avoidance, we define the action as the
heading change of the controlled UAS at each time step. The
action space is bounded as follows,

Ah = [−30◦, 30◦] (11)

Furthermore, the agent will choose an action ah ∈ Ah at each
time step t , and change its heading angle, ψt :

ψt+1 = ψt + ah (12)

2) ACTION SPACE FOR DETERMINISTIC
INTRUDER AVOIDANCE
As for deterministic intruder avoidance case, besides the
heading angle change ah ∈ Ah, the UAS is also controlled
by speed command. Both the heading angle and the speed
are updated every second and remain unchanged during the
interval. As UAS maneuvers are more flexible than manned
aircraft and regulations on UAS speed change are unavail-
able, the action space of UAS speed command av is set to,

Av = [0m/s, 40 m/s] (13)

More specifically, the agent will take an action av ∈ Av, and
change its speed ṽ accordingly at next time step t + 1:

ṽt+1 = av (14)

In real-world applications, however, it is rarely desirable for
the controller of a UAS to make sharp turns. Therefore,
a penalty for large heading or speed change due to the
impact on power consumption could be considered in future
research.

C. TERMINAL STATE
In the current study, a conflict occurs when the distance
between the agent and the obstacle is less than the separa-
tion requirement. When the UAS operation is deterministic,
a buffer zone is not necessary and the minimum separation
distance is set to zero. In implementations of static obstacle
avoidance with uncertainty and moving obstacle avoidance,
the UAS position uncertainty is taken into account. The sepa-
ration requirement is determined according to the operational
safety bound proposed in [52]. With the UAS speed of 20m/s
and other UAS operation performance following the mean
value shown in Table 3 in [52], the minimum separation
distances for static obstacle avoidance is 75 m and 150 m for
moving obstacle avoidance.

1) TERMINAL STATE FOR STATIC OBSTACLE AVOIDANCE
The terminal state for static obstacle avoidance consists of
two different types of states:
• Conflict state: the distance between the agent and an
obstacle is less than the separation requirement.

• Goal state: the agent is within 400 m from the
destination.
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2) TERMINAL STATE FOR MOVING OBSTACLE AVOIDANCE
The episode terminates only when the agent is within 200 m
from the destination, which indicates the agent accomplishes
the navigation task.

D. REWARD FUNCTION
In order to enable the agent to achieve its destination while
avoiding conflicts, the reward function is designed to award
task accomplishments while penalizing conflicts or failure to
move towards the destination.

1) REWARD FUNCTION FOR STATIC OBSTACLE AVOIDANCE
As for the simulations of static obstacle avoidance, the reward
function, R(s, a), is developed in Eq. (15), where the learning
agent receives a reward when it reaches the goal state and
a penalty when it reaches the conflict state. The linear term
of the reward function guides the UAS flying towards the
destination. The constant penalty at each step emphasizes the
shortest path rule.

R(s, a)=


10, if s is goal state,
−0.001 dg − 0.05− 16, if s is conflict state,
−0.001 dg − 0.05, otherwise.

(15)

2) REWARD FUNCTION FOR MOVING
OBSTACLE AVOIDANCE
As for the simulations of intruder avoidance, the reward
function, R(s, a), is developed as shown in Eq. (16), similar
to Eq. (15).

R(s, a)

=



1000, if s is goal state,

−cgdg−c0+
∑
i

c1i(arctan(c2i(di−c3i))−
π

2
)−180,

if s is conflict state,

−cgdg−c0+
∑
i

c1i(arctan(c2i(di − c3i))−
π

2
),

otherwise.

(16)

In this reward function, cg, c0, c1i, c2i, c3i denote the coeffi-
cients of penalty terms and require to be balanced to assist the
agent to avoid conflicts and reach the goal simultaneously.
When the ownership is close to the intruder, the inverse
tangent term of the reward function is activated to maintain
the separation distance in an appropriate range. With the
coefficients set in the stochastic intruder case (as shown in
Section IV-B1), the relation between the distance and the
inverse tangent term, 17(arctan(0.1(di − 12))− π

2 ), is shown
in Fig. 1. The agent starts to get a penalty when the dis-
tance approaches 250 m. This reward setting can help resolve
conflicts with other intruders at a relatively early stage.
We note that c2i, c3i can be tuned to fit different separation
standards.

FIGURE 1. Reward that is based on the distance between the learning
agent and the intruder.

E. PROXIMAL POLICY OPTIMIZATION ALGORITHM
One drawback of∇θJ (πθ ) shown in Eq. (6) which is proposed
in [45], is that a single bad update may cause significant
destructive effects and impede the model’s final performance.
A recently developed algorithm, called Proximal Policy Opti-
mization (PPO) [30], addressed this issue by proposing a
policy changing ratio which describes the difference between
the previous policy and the new policy at time step t:

rt (θ ) =
πθ (at |st )
πθold (at |st )

(17)

where θold and θ represent the network weights before and
after update, respectively.

By limiting the policy changing ratio in the range of
[1 − ε, 1 + ε] abd setting ε to 0.2, the PPO loss functions
for the actor and critic networks are determined as follows:

Lπ (θ ) = − E
τ∼πθ

[min(rt (θ ) · At , clip(rt (θ ), 1− ε, 1+ ε) · At ]

− β · H (π (·|st )) (18)

Lv = A2t (19)

At = Rt − V (st ) (20)

The advantage function At in Eq. (18) and Eq. (19) measures
whether the action improves the policy’s default behavior.
Additionally, we include the policy entropy β · H (π (·|st )) in
the actor loss function to encourage exploration by discour-
aging premature convergence to sub-optimal policies.

In the implementation, we utilize two layers Multilayer
perceptron (MLP) with 64 hidden units each for both actor
and critic networks. Tanh function is selected as the activation
function for the hidden layers.

IV. NUMERICAL EXPERIMENTS
Numerical experiments are conducted in this section to deter-
mine the effectiveness of the proposed conflict resolution
model in continuous action space. Two categories of colli-
sion avoidance are included: static obstacle avoidance, and
moving obstacle avoidance. Regarding static obstacle avoid-
ance, we explore the performance on obstacle with different
shapes and sizes, and environment with uncertainty in UAS
operation. Furthermore, we investigate the environment with
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stochastic intruders under control of heading angle, and the
environment with deterministic intruders under control of
heading angle and speed. OpenAI Baselines [53] is utilized
for the implementation of PPO algorithm. For each scenario,
the number of training time steps is 30 million for the deep
reinforcement learning model. Comparisons with other meth-
ods are not provided, since it can be difficult for classical opti-
mization or control methods to handle problems with random
origins— each specific casemust be solved separately.While
RL methods can learn a policy that guides the agent to the
destination from different random points. Additionally, the
comparison of PPO with other RL algorithms is conducted
in [30] and PPO has shown better overall performance.

A. STATIC OBSTACLE AVOIDANCE
The simulation environment is a 4 km × 4 km
two-dimensional free flight airspace. The speed of UAS is
set to 20 m/s. In the training process, the learning agent
starts from the four edges of the airspace boundary. The
starting location is randomly sampled and the coordinates of
the starting location are an integer array for simplification.
The location of the goal is (2500, 2500). Here we consider
two types of static obstacles: circular obstacle and rectangular
obstacle, as illustrated in Fig. 2. The goal position is marked
as the plus sign, and the no-passing zones are marked in
blue. The RL learning curve is plotted in Fig. 3. The blue
region is the raw episode reward data during training and
the orange line is the episode reward mean of 100 episodes.
Fig. 3 indicates that the episode reward increases and the
optimal policy is found. For visualization of the performance
of the developed conflict resolution model, a testing set of
160 trajectories with different starting positions are gener-
ated. Starting positions for testing are selected uniformly
from the edges of the airspace boundary. The heading angles
in 160 trajectories are collected and plotted every 15 time
steps.

1) CIRCULAR OBSTACLE AVOIDANCE
The static obstacles set up in this case study are illustrated
in Fig. 2(a) and the testing result of 160 trajectories with dif-
ferent starting positions on the airspace boundary is demon-
strated in Fig. 4. The agent’s selected heading direction at
current position is marked as a black arrow.

It can be seen from Fig. 4 that the agent selects the heading
direction that points towards the destination and tends to
bypass the no-passing regions. Moreover, the agent behaves
optimally based on the relative position of the agent, obstacle,
and goal. For example, near the lower-left obstacle, if the
agent’s position is above the line connecting the obstacle
center and the goal, the UAS takes a small left turn to
the higher semicircle to avoid the obstacle. Otherwise, the
UAS bypasses the lower semicircle. No failure exists in the
160 testing trajectories in Fig. 4.

2) RECTANGULAR OBSTACLE AVOIDANCE
The simulation of the rectangular obstacle case differs from
the previous circular obstacle case in the condition for

FIGURE 2. (a) Circular obstacle environment. (b) Rectangular obstacle
environment. +: goal; blue: no-passing area.

determining whether the learning agent is at a conflict state.
Fig. 2(b) illustrates the environment of the rectangular obsta-
cle case and Fig. 5 shows the testing result of 160 trajectories.

The performance in Fig. 5 is similar to that in Fig. 4.
The UAS learns to bypass the obstacle through one side
of the obstacle depending on the relative position of the agent,
obstacle, and goal. No failure happens among the test of
160 trajectories.

From Fig. 4 and Fig. 5, it can be seen that the proposed
model has the capability to enable the UAS to navigate to
the goal with the shortest path and avoid static obstacles
meanwhile for different obstacle sizes or shapes.

3) CIRCULAR OBSTACLE AVOIDANCE WITH UNCERTAINTY
This case study is conducted to evaluate the effectiveness
of handling uncertainty by the developed conflict resolution
model. There exists randomness in almost every aspect of
UTM (e.g., UAS operation, environment). Thus, uncertainty
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FIGURE 3. Episode reward mean for (a) circular obstacle avoidance,
(b) rectangular obstacle environment, (c) circular obstacle avoidance with
probabilistic agent’s position.

quantification of aircraft operations is critical for future safety
analysis (e.g., the deviation from a trajectory plan due to
wind, true speed, positioning error) [52], [54], [55], [56],
[57], [58]. Thus, to model the uncertainties in UAS operation,
we form a circle, the center of which is the predicted UAS
position without uncertainty. And the radius is the separation
requirement, 75 m. With 90% probability, the UAS position
is accurately located at the center of the circle; with a 10%
probability, the UAS position will be located at a point around
the circle with a uniform distribution. Such uncertainty is
taken into consideration by adding to the position of the agent
at the next time step after executing action a.

Fig. 6 shows the testing results. The agent’s position with
uncertainty is plotted In Fig. 6(a). Alternatively, the uncer-
tainty of 75 m can be added to the obstacle. The red circles in
Fig. 6(b) indicate the obstacle expansion due to the uncer-
tainty of 75 m. As expected, the result in Fig. 6(a) shows
that the UAS tries to keep 75 m away from the obstacles.

FIGURE 4. Results of circular obstacle avoidance. +: goal; blue:
no-passing area; arrow: the selected heading direction.

FIGURE 5. Results of rectangular obstacle avoidance. +: goal; blue:
no-passing area; arrow: the selected heading direction.

So both methods of representing uncertainty can work for
the simulations of obstacle avoidance with uncertainty. One
failure happens near the upper-left obstacle in Fig. 6(a). There
are three failures near the lower-left obstacle in Fig. 6(b).
The common among the failures is that the agent’s origin is
approximately on the line connecting the obstacle center and
the goal. The possible reason is that the policy network gets
stuck at the local optimum since the two trajectories next to
it behave well.

B. MOVING OBSTACLE AVOIDANCE
In the simulation of the moving intruder aircraft avoidance
case, the speed of intruders is set to 20 m/s. We conducted
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FIGURE 6. (a) Results with probabilistic agent’s position. (b) Results with
uncertainty added to obstacles. +: goal; blue: no-passing area; arrow: the
selected heading direction; red: separation requirement due to
uncertainty in UAS operation.

two case studies for moving obstacle avoidance: stochastic
intruder case with control of heading angle and deterministic
intruder case with control of heading angle and speed. In the
stochastic intruder case, the scenario changes every episode.
In detail, the intruder has a different origin and heading angle
for each episode. But within one episode, intruders have fixed
heading angles. The reward coefficients are listed in Table 1.
The episode rewards during training are plotted in Fig. 7. The
blue region is the raw episode reward data and the orange line
is the episode rewardmean of 100 episodes. For the visualiza-
tion of the performance of the developed obstacle avoidance

model, we generate a testing set of 500 episodeswith the same
the setting as the training process for each moving obstacle
cases. Also, the minimum distance between the agent and the
three intruders within each episode is recorded.

TABLE 1. Reward coefficient.

FIGURE 7. (a)Episode reward mean of stochastic-intruder avoidance with
control of heading angle. (b) Episode reward mean of
deterministic-intruder avoidance with control of heading angle and
speed.

1) STOCHASTIC-INTRUDER AVOIDANCE WITH
CONTROL OF HEADING ANGLE
The origin and heading angle of the three intruders are
assumed to follow a uniform distribution and the distribution
range is shown in Table 2. The origin coordinate of agent
is uniformly sampled from (75 ∼ 135, 0 ∼ 25). The goal
is located at (100, 200). The agent moves at 20 m/s. The
intruders are designed to pass the line connecting the UAS
origin and the goal.

The demonstration of one scenario and UAS performance
is shown in Fig. 8. Information related to the ownership
is plotted in blue and black represents the information of
intruders. The plus sign denotes the origin and the star sign is
the goal for the agent. The centers of circles are the positions
of aircraft which are plotted every 5 time steps and labeled
with time step every 10 time steps. The radius of the circle
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TABLE 2. Intruder information.

represents the aircraft speed. In this scenario, the agent learns
to go around the left side to avoid the three intruders. The
result of the minimum distance between the agent and the
three intruders within each episode is plotted in Fig. 9 by
the blue dots. The orange line is the separation requirement
of 150 m. All the blue dots are above the orange line, which
represents that there is no failure case in Fig. 9 and the model
succeeds to avoid the three intruders in 500 different testing
scenarios.

FIGURE 8. Demonstration of one scenario and UAS performance of
stochastic-intruder avoidance with control of heading angle. Number:
time step. Blue: ownership; black: intruders. Circle center: UAS position;
circle radius: UAS speed. +: origin; *: goal.

2) DETERMINISTIC-INTRUDER AVOIDANCE WITH CONTROL
OF HEADING ANGLE AND SPEED
We also investigate the possibility of utilizing the proposed
reward function to generate heading angle change command
and speed command. This investigation is valuable when
changing the heading angle cannot efficiently resolve con-
flicts. Moreover, with an extra choice of changing speed, the
UAS may result in less influence on flight plans of other
aircraft and aerospace capacity. However, due to the larger
action space, the training process needs more effort.

The origin and heading angle of the three intruders are
listed in Table 3. The origin coordinate of agent is (100, 210)
and the goal is located at (100, 0). Intruder 1 is designed to
test if the ownership can fly at a suitable speed and the other
two intruders are set to test the performance of the heading
angle change command.

FIGURE 9. Minimum distance results of stochastic-intruder avoidance
with control of heading angle. Orange line: separation requirement of
150 m. Blue dot: the minimum distance between the agent and the three
intruders within each episode.

TABLE 3. Intruder information.

FIGURE 10. Demonstration of the scenario and UAS performance of
deterministic-intruder avoidance with control of heading angle and
speed. Number: time step. Blue: ownership; black: intruders. Circle
center: UAS position; circle radius: UAS speed. +: origin; *: goal.

Similar to the result in Fig. 8, the demonstration of the sce-
nario and UAS performance is shown in Fig. 10. Information
related to the ownership is plotted in blue and black represents
the information of intruders. The plus sign denotes the origin
and the star sign is the goal for the agent. The centers of
circles are the positions of aircraft which are plotted every
3 time steps and labeled with time step every 6 time steps.
The radius of the circle represents the aircraft speed. It can be
seen that the agent reduces speed from 12 to 24 time steps to
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FIGURE 11. Minimum distance results of deterministic-intruder
avoidance with control of heading angle and speed. Orange line:
separation requirement of 150 m. Blue dot: the minimum distance
between the agent and the three intruders within each episode.

keep a safe separation away from intruder 1. Also, the agent
goes around the right side to avoid the approaching intruder 2
and after resolving the possible conflicts with intruder 3 at
66 time step, it flies towards the goal to save time. The result
of the minimum distance is plotted in Fig. 11 by the blue dots.
All the blue dots are above the orange line which indicates
the separation requirement of 150 m. So, no failure exists in
Fig. 11, indicating that the model succeeds to avoid the three
intruders under the control of heading angle and speed.

V. CONCLUSION
In this study, we propose a method for utilizing deep rein-
forcement learning to enable the UAS to navigate success-
fully in urban airspace with continuous action space. This
work proposes a thorough and holistic formulation of UAS
motion planning as an MDP problem so the PPO algorithm
can be applied. The formulation includes the definitions of the
necessary components in RL—state, continuous action, tran-
sition, and reward function — to specify the problem. Both
static and moving obstacles are simulated, and the trained
UAS is capable of achieving the goal and resolving conflict
simultaneously. We also investigate the performance on vari-
ous static obstacle shapes and sizes, and under uncertainty in
UAS operation. Stochastic intruders are included in the train-
ing process of the moving obstacle case studies. Moreover,
we investigate the possibility of the proposed reward function
to resolve conflict through heading angle and speed. Results
show that the proposed model is able to provide accurate and
robust guidance and resolve conflict with a success rate of
over 99%.

To further improve the usability and efficiency of the
proposed algorithm for real-world problems, in future work,
wewouldmodel part of the intruders as agents and there could
be cooperation among the multiple aircraft. Additionally, the
two learning problems with static or moving obstacles can
be integrated by combining reward functions for both static
and dynamic obstacles. Tuning of coefficients in the reward

functions needs to be done to ensure the proper weight of
both static and dynamic rewards in the final function. More
fundamental development of the RL algorithms to further
increases the safety of UAS motion planning is also worth
investigating in the future.
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