
Vision-based Perception with Safety Awareness for UAS
Autonomous Landing

Zhenhao Zhao ∗, Jonathan Lee†, Zongyao Li‡, Chung Hyuk Park §, and Peng Wei¶
George Washington University, Washington, DC, 20052, USA

The use of small unmanned aircraft systems (UAS) has shown great potential for last-mile
package delivery and medical supply transportation. In order to achieve higher levels of
autonomy, scale up operations without tele-operating human pilots, and ensure landing safety
during off-nominal events (e.g. people, pets, bikes, or cars being near/on the designated landing
pad), we propose a robust, real-time deep learning based safe landing perception algorithm to (1)
identify the landing pad, and (2) detect static or moving obstacles/humans near or on the landing
pad. Specifically in this paper, we compare two state-of-art deep learning based computer vision
models for object detection: RetinaNet and YOLOv5 to detect potential obstacles (pedestrians,
cars and etc.). Additionally, we design and build a landing pad based on ArUco fiducial markers
so we can detect the relative position and angle between the landing pad and the UAS with
the ArUco library. Finally, we combined the landing pad and potential obstacle detection
algorithms to ensure the landing pad is clear of obstacles. Our algorithm achieves real-time
performance with 30 frame per second (FPS) video, suitable for real-world applications and
further development.

I. Introduction
The use of small Unmanned Aircraft Systems (UAS) is promising for last-mile package delivery. Commercial

small UASs have become more and more automated in executing pre-defined flight plans and landing on well-managed
landing pads. However, to achieve higher level of autonomy during an off-nominal landing, a UAS needs to recognize
landing scene reconfiguration such as moving or static obstacles near or on the designated landing pad. These obstacles
often include people, pets, cars, and bikes. We explore the feasibility of using computer vision based perception to (1)
identify the landing pad and (2) detect the obstacles near or on the landing pad. An accurate, fast and reliable perception
module is a key component for a fully autonomous landing stack, together with a prediction module and planning/control
module. In this paper, we focus on implementing and evaluating two state-of-the-art deep learning models for UAS
perception, RetinaNet [1] and YOLOv5 [2]. We compare the two models’ object detection accuracy and computation
speed with real-world landing videos. Additionally, we evaluate the performance of the object detection on simulated
landings on landing zones designated with Aruco markers.

Autonomous landing of UAS during off-nominal events has been a challenging research topic, which has been
addressed with diverse approaches. Some of them compute the risk of collision with obstacle based on a UAV’s
predicted trajectory [3] and some of them try to explore the situation awareness issues [4] [5]. However, not much work
has been done in applying deep learning based computer vision approaches to support small UAS autonomous landing
during off-nominal events with real-time capabilities. Thus, this paper presents a major part of our research team’s
continuous effort on building a full-stack autonomous landing demonstration.

II. Related work
Our work extends the research of Yang et al [6]. The paper achieves a deep learning model trained for highly accurate

multiple pedestrian detection. The paper identifies the application of real-time pedestrian detection to enhancing safety
during the landing phase of a package delivery or emergency landing. We further develop this concept and determine
the necessary algorithms to deploy a system on-board a small UAS.

∗Graduate student, Department of Computer Science / Biomedical Engineering.
†Undergraduate student, Department of Computer Science.
‡Graduate student, Department of Computer Science.
§Associate Professor, Department of Biomedical Engineering.
¶Associate Professor, Department of Mechanical and Aerospace Engineering, AIAA Senior Member.

1

A system for safe landing zone identification via computer vision has been designed by Lusk et al [7]. The system,
called Safe2Ditch, is an autonomous crash management system that reroutes the UAS to an alternative landing site if the
presence of non-cooperative obstacles are detected in the current landing zone. Obstacle detection is achieved through
recursive-RANSAC [8], a visual multiple target tracker, which can reliably identify moving obstacles from a moving
camera. Whereas this approach was successful in determining the presence of a moving obstacle, it lacked the ability to
classify objects and was not designed to detect stationary objects. Determining the type of object is valuable because it
allows us the possibility to quantify levels of risk to humans, vehicles, or property. Thus, it remains important to utilize
computer vision for both object localization and classification.

In the computer vision field, much attention has been spent developing computer vision based object detectors.
The Histogram of Oriented Gradients (HOG) [9] and Deformable Part-based Model (DPM) [10] were the peak of
traditional detection based models. In 2014, a category of models called two-stage detectors was pioneered by R-CNN
[11]. Incremental performance improvements were made by other models such as Fast R-CNN [12] and Faster R-CNN
[13]. This group of models features a distinct region proposal module and classification module, which remained a
bottleneck for real-time applications. In 2015, Redmon et al. proposed a single-stage detector, YOLO [14] which greatly
sped up detection time, but sacrificed in accuracy. Then RetinaNet introduced a new loss function Focal Loss which
helped the model achieve high inference speed while outperforming two-stage detectors in terms of accuracy. Single
stage detectors are still amongst the state-of-the-art, including the YOLO family of models. In this work we compare
RetinaNet and YOLOv5 because they are lightweight models that will enable us to achieve real time performance, while
still maintaining a high detection accuracy.

III. Methods

A. Dataset description and details
We trained the object detection models on the VisDrone2019-Det dataset [15], which is a public dataset collected by

the AISKYEYE team at the Lab of Machine Learning and Data Mining, Tianjin University, China. The dataset consists
of 7,019 static images captured by various drone platforms in 14 different cities throughout China. The images are taken
from a variety of altitudes and camera angles, covering a broad distribution of locations from urban to rural with a
variety of object densities. This makes the model trained on this dataset robust and very suitable for this study.

B. Deep learning model selection
We use a deep learning model to detect potential obstacles (cars, pedestrians, etc.). The model will return a list 𝑂,

with each item in 𝑂 being a potential obstacle:

[(𝑥1𝑖 , 𝑦1𝑖), (𝑥2𝑖 , 𝑦2𝑖)]

The coordinates represent the top left corner and the bottom right corner respectively for the bounding box containing
the obstacle, where 𝑖 denotes the index of the obstacle.

In order to obtain higher accuracy and more real-time computing speed, we compared two object detection models
that have excellent performances in other tasks: RetinaNet and YOLOv5.

1. RetinaNet
Architecture: The architecture of the RetinaNet is very similar to the Faster R-CNN[13]: It is mainly composed

of the following three parts. Firstly, a backbone network for feature extraction. We selected ResNet50[16] to be
the backbone. Secondly, a Feature Pyramid Network (FPN)[17] built on top of the backbone is used to integrate
high level semantic information with low level semantic information. The FPN will improve the model’s ability to
identify multi-scale features. The final step is composed of two parallel fully connected subnetworks (subnets): (1)
a classification subnet and (2) a box regression subnet. The subnets are used at each layer in the FPN to predict
the probability of object presence at each spatial position, and regress the offset from each anchor box to a nearby
ground-truth object respectively. Fig. 1 shows the structure of RetinaNet.

Focal loss: Traditional one-stage detectors, like YOLOv2 [14] [18] and SSD [19], struggle to deal with extreme
foreground-background class imbalance. This is due to the presence of many candidate objects with different spatial
locations, scales, and aspect ratios. Therefore, accuracy is greatly reduced compared with two-stage detectors. So a
new loss function called Focal Loss was introduced to solve this problem: 𝐹𝐿 (𝑃𝑡) = −(1 − 𝑃𝑡)𝛾 log (𝑃𝑡). It adds

2

a factor (1 − 𝑝𝑡)𝛾 to the standard cross entropy formula. When 𝛾 is set to a positive value, the easy well-classified
examples (background) will contribute less to the total loss function and the hard misclassified examples (foreground)
will contribute more to the total loss function.

Fig. 1 The detailed structure for RetinaNet model.

2. YOLOv5
Architecturally, YOLOv5 is similar to YOLOv4 [20], but it adds a spatial pyramid pooling layer [21] and puts

forward new data enhancement methods. YOLOv5 is composed of three key structures: the head, neck, and backbone.
The backbone is a convolutional network to extract and process key features from the images. The neck uses the features
from the backbones, with fully connected layers, to make predictions on probabilities and spatial information for the
bounding box. The head is the final output layer of the network that generates anchor boxes for feature maps and outputs
final output vectors with class probabilities and bounding boxes of detected objects. [2] The detailed structure of
YOLOv5 has been shown in the Fig. 2.

Fig. 2 The detailed structure for YOLOv5 model.

3

3. Comparison of YOLOv5 and RetinaNet
There are many technical differences between YOLOv5 and RetinaNet. However, the general structure remains

similar: they both use a backbone network to extract the features of the original input. A neck structure is also used to
combine and analyze the features extracted from the backbone network. Finally, a head structure is used to integrate the
output of the neck and make the final detection. The focal loss first introduced in RetinaNet is also used in YOLOv5.

The key differences come from the technical details. First, the models use different backbone networks with the
backbone of the YOLOv5 being more simple than RetinaNet. Compared to ResNet50, the two bottle neck CSP [22]
structures of YOLOv5 have less layers and are more efficient. Next, the backbone of the YOLOv5 also uses a Spatial
Pyramid Pooling layer [21] to balance the extraction of global features and the local features. Although the backbone of
YOLOv5 is more simple and efficient, the backbone of RetinaNet is deeper and will catch more features. Additionally,
the neck part is also slightly different, compared to the feature pyramid network used in RetinaNet. YOLOv5 adds
a bottleneck CSP structure to further extract the features and, although this increases the computation cost, it is also
helpful for increasing the detection accuracy. In the final output head structure, RetinaNet used two subnets to predict
the classification and bounding box locations separately. Contrarily, YOLOv5 uses one network to directly output the
classification and the bounding box locations.

Therefore, although YOLOv5 was created a few years after RetinaNet and used more advanced techniques, RetinaNet
also has certain advantages in the comparison of some detailed structures. Hence, we chose to compare the accuracy
and speed of both models to find the more efficient model for our landing safety detection algorithm to achieve high
accuracy and fast inference speeds.

C. Landing pad with ArUco markers and its detection
In this study, We used ArUco markers[23] to build, detect, and track the landing pad. The ArUco library is based on

OpenCV and enables the detection of various tag dictionaries. ArUco markers are synthetic square markers containing
an inner binary matrix. There are several functions in the OpenCV library that can locate the markers precisely and
quickly in the images and videos.

The landing pad consists of four ArUco markers placed on the upper left corner, upper right corner, lower left corner
and lower right corner of the landing pad. Any ArUco marker tag can be used in each of the corners, as the landing pad
does not have to face a particular orientation. Fig. 3 shows an example of the ArUco Marker and landing pad we built
based on the 4 markers.

Fig. 3 Left: an example of the ArUco markers. Right: a landing pad built by 4 ArUco markers.

4

The landing pad detection algorithm is based on the ArUco marker detection. Each marker detection return four
2-D coordinates represent 4 corners of the marker respectively. Therefore, we can get a total of 16 coordinates for 4
markers. Then, we can store all the coordinate for x-axis in a vector ®𝑥 and y-axis in a vector ®𝑦. Both of ®𝑥 and ®𝑦 consist
16 elements. Finally, we can determine the coordinates of the landing pad: (𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1) and (𝑥2, 𝑦2) by

𝑥1 = 𝑚𝑖𝑛(®𝑥)

𝑥2 = 𝑚𝑎𝑥(®𝑥)

𝑦1 = 𝑚𝑖𝑛(®𝑦)

𝑦2 = 𝑚𝑎𝑥(®𝑦)

D. Landing pad safety checking algorithm
Above, we discussed how to use the deep learning models and the ArUco detection algorithm to obtain the bounding

box of potential obstacles (pedestrians, vehicles, etc.) and landing pads in the video respectively. All bounding boxes
have two pairs of 𝑥𝑦-coordinates, which represent the coordinate of the top left corner and the bottom right corner. We
will use this information to check if the landing pad is safe to land.

We first traverse obstacles list 𝑂 to get two coordinates of one obstacle, [(𝑥1𝑖 , 𝑦1𝑖), (𝑥2𝑖 , 𝑦2𝑖)]. And (𝑥1, 𝑦1), (𝑥2, 𝑦2),
which represent the two corners coordinates of landing pad. We then check if there is an overlap between the two areas
checking the following conditions between the coordinates:

(𝑥1 ≤ 𝑥1𝑖 ≤ 𝑥2 𝑜𝑟 𝑥1 ≤ 𝑥2𝑖 ≤ 𝑥2) 𝑎𝑛𝑑 (𝑦1 ≤ 𝑦1𝑖 ≤ 𝑦2 𝑜𝑟 𝑦1 ≤ 𝑦2𝑖 ≤ 𝑦2) (1)

and

(𝑥1𝑖 ≤ 𝑥1 ≤ 𝑥2𝑖 𝑜𝑟 𝑥1𝑖 ≤ 𝑥2 ≤ 𝑥2𝑖) 𝑎𝑛𝑑 (𝑦1𝑖 < 𝑦1 ≤ 𝑦2𝑖 𝑜𝑟 𝑦1𝑖 ≤ 𝑦2 ≤ 𝑦2𝑖) (2)

If Equation (1) or Equation (2) returns 𝑇𝑟𝑢𝑒, at least one of the obstacle bounding boxes overlaps the landing pad. Our
algorithm will set a flag for the planning/control module to halt the landing. Algorithm 1 shows the whole process of
our landing pad safety checking function.

Algorithm 1 Landing Pad Safety Checking
Require: IMG← Image/one frame from the drone camera
𝑂 ← Deep learning model(IMG)
(𝑥1, 𝑦1), (𝑥2, 𝑦2) ← Landing pad detection function(IMG)
𝑎𝑙𝑒𝑟𝑡 ← 𝐹𝐴𝐿𝑆𝐸

for each [(𝑥1𝑖 , 𝑦1𝑖), (𝑥2𝑖 , 𝑦2𝑖)] ∈ 𝑂 do
if (𝑥1 ≤ 𝑥1𝑖 ≤ 𝑥2 𝑜𝑟 𝑥1 ≤ 𝑥2𝑖 ≤ 𝑥2) 𝑎𝑛𝑑 (𝑦1 ≤ 𝑦1𝑖 ≤ 𝑦2 𝑜𝑟 𝑦1 ≤ 𝑦2𝑖 ≤ 𝑦2) then

𝑎𝑙𝑒𝑟𝑡 ← 𝑇𝑅𝑈𝐸

else if (𝑥1𝑖 ≤ 𝑥1 ≤ 𝑥2𝑖 𝑜𝑟 𝑥1𝑖 ≤ 𝑥2 ≤ 𝑥2𝑖) 𝑎𝑛𝑑 (𝑦1𝑖 < 𝑦1 ≤ 𝑦2𝑖 𝑜𝑟 𝑦1𝑖 ≤ 𝑦2 ≤ 𝑦2𝑖) then
𝑎𝑙𝑒𝑟𝑡 ← 𝑇𝑅𝑈𝐸

else
continue

end if
end for
return 𝑎𝑙𝑒𝑟𝑡

IV. Results

A. Training and evaluating the deep learning models
We present experimental results on the VisDrone2019-Det dataset. We use a workstation running Ubuntu 20.04

with an Intel Xeon W-3245 @ 4.60 GHz (32 cores), 128GB RAM, and a RTX 3080 GPU (10GB) to train the models

5

and a Nvidia Jetson Xavier NX (Fig. 4) to evaluate the models. Additionally, we use a DJI Mini 2 to capture real-world
landing footage on an experimental landing pad setup.

Fig. 4 The Jetson Xavier NX.

The RetinaNet and YOLOv5 models are pre-trained on the COCO dataset [24]. The training and validation images
were normalized and scaled, and data was augmented by horizontal image flipping. All training was done with an
adam optimizer and optimal hyperparameters were selected through a hyperparameter grid search. The grid search was
conducted with cross validation to determine the best learning rate, batch size, and patience over 5 epochs. The patience
parameter is part of the scheduler which decreases the learning rate if the loss has plateaued over a number of epochs.
The best performing hyperparameters were then selected to train the model over 20 epochs. Table 1 shows the result
of the grid search result. Fig. 5 and Fig.6 show the training process for the YOLOv5 model and RetinaNet. As the
training progresses, the training and validation losses decrease, and model accuracy indicators increase. Mean Average
Precision(mAP) is a metric used to evaluate object detection models. When the mAP is higher, the model should be
more precise. The mAP of YOLOv5 is slightly higher than that of the RetinaNet with the best epoch.

Table 1 Hyperparameter grid search performance

Index Learning rate Batch size Patience Fold 0 mAP Fold 1 mAP
1 0.001 4 1 0.0013 0.00075
2 0.001 4 3 0.0 0.0016
3 0.001 2 1 0.0023 0.0058
4 0.001 2 3 0.0 0.0016
5 0.00001 4 1 0.0168 0.0013
6 0.00001 4 3 0.0135 0.0013
7 0.00001 2 1 0.0138 0.0202
8 0.00001 2 3 0.0161 0.0203

6

Fig. 5 The deep learning training plots for YOLOv5. The three columns on the left are the decreasing curves of
various losses and the two columns on the right are the increasing curves of various accuracy indicators.

Fig. 6 Left: Loss on training and validation dataset. Right: Mean average precision on dataset during training
and validation.

The confusion matrix (Fig. 7 and Fig. 8) shows predicted classes versus the ground truth. The result is as expected
since most of the predictions are along the main diagonal. Note that there are many more pedestrians and cars than other
classes due to the high class imbalance of the dataset. The model did misclassify other vehicle types as cars including
vans, trucks, buses and motorcycles. We found that this is not a significant issue since all vehicles will be regarded as
obstacles by the UAS.

7

Fig. 7 RetinaNet model confusion matrix

Fig. 8 YOLOv5 model confusion matrix.

8

Additionally, we tested the performance of the models on real landing videos taken on our DJI Mini 2 drone (Fig. 9
and Fig. 10). The Mini 2 captured 4K videos, on which we ran both computer vision models post-flight.

Fig. 9 RetinaNet model inference on one frame of the landing video.∗

Fig. 10 YOLO model inference on one frame of the landing video.†

Table 2 shows the speed of the video inference for the two models on the different platforms. The inference speed of
YOLOv5 is significantly better than that of RetinaNet. Based on the result, we decide to use YOLOv5 for our final
safety landing algorithm.

∗Full video: https://www.youtube.com/watch?v=SGFQ4z6T_2o.
†Full video: https://www.youtube.com/watch?v=fQm7ZFBYHF4.

9

https://www.youtube.com/watch?v=SGFQ4z6T_2o
https://www.youtube.com/watch?v=fQm7ZFBYHF4

Table 2 Comparison of model speed on a 14 second video on different hardware platforms

Model Workstation*:
seconds/frame

Workstation*:
seconds/video

Onboard GPU**:
seconds/frame

Onboard GPU**:
seconds/video

RetinaNet 0.0476 20 0.7476 314
YOLOv5 0.0048 2 0.0619 26
* Intel Xeon W-3245 @ 4.60 GHz (32 cores), 128GB RAM, and a RTX 3080 GPU (10GB)
** Nvidia Jetson Xavier NX

B. Landing pad detection and safety checking
We built landing pad by ArUco marker and then test our landing pad detecting algorithm by self-collecting data (DJI

Mini 2 drone). Fig. 11 shows the result.

Fig. 11 The result of our algorithms. When a pedestrian walks into the target landing area from outside, the
overlap is detected and an alert is given in the upper left of the video.∗

∗Full video: https://www.youtube.com/watch?v=aiQMhQI_wJE.

10

https://www.youtube.com/watch?v=aiQMhQI_wJE

We ran our algorithm on the workstation (described above) and achieved an acceptable inference time. For a 53
seconds video, the total run time is 68.3656 seconds. This run time includes the algorithm initialization and visualization
time. The average inference time per frame is only 0.0207s. The inference reached a maximum of 48.31 FPS which
is higher than the video footage frame rate at 30 FPS. Therefore the algorithm meets our constraint for real-time
performance.

V. Limitations
Our test scenarios were restricted in the environments available to perform tests. Due to safety concerns and flying

restrictions, we could not perform tests in urban areas and in areas with many people. However, it would be desirable to
test in a wider variety of scenarios that are representative of real-world landing situations. Additionally, we are limited
to identifying object classes that are annotated in the VisDrone dataset. For example, our models would not be able to
detect pets, such as cats or dogs, which may be present in potential residential landing areas. Additionally, our model
was trained on a dataset collected only from cities in China, and generalization to detect vehicles and pedestrians around
the world is also a concern. In the future, we can explore additional datasets and apply transfer learning to our models to
address these problems.

In the videos we collected, our model was able to identify pedestrians and vehicles in the scene reliably from an
altitude of between 2 and 20 meters. At altitudes above 20 meters, the landing pad markers appear too small to be
detected. At altitudes less than 2 meters, it cannot be guaranteed that all four landing pad markers will appear in the
view of the camera. We found this to be an acceptable range of altitudes, as the UAS could use a GPS and altimeter to
approach the landing pad and descend to the desired height for landing pad and obstacle detection to be performed.

VI. Conclusion and Future Work
This paper proposed a landing pad safety detection algorithm using a computer vision-based approach. We first

compared two state-of-art deep learning based object detection models for detecting potential obstacles in real-time.
Next, we designed and built a landing pad constructed from ArUco markers. Finally, we applied our algorithm to
self-collected data in a real-world environment. The model mAP reached above 0.32 and the average inference time per
frame was 0.0207 seconds. The results show that our algorithm was able to successfully detected obstacles near/on a
landing pad with YOLOv5 and achieved real-time detection.

We also demonstrated safety aware features by combining the vision-based landing pad tracking and obstacle
(including pedestrians) tracking algorithm for safety landing. This was achieved in near real-time: 48.31 FPS. We
understand this is only a beginning of the study for more safe and reliable UAS operations in the human environment, as
the distance to the robot is only a basic feature in advanced human-robot interaction studies [25–27].

In future work, our object detection algorithm will be extended to consider predicted trajectories of obstacles
and moving pedestrians as well as their behaviors. This would help identify potential hazards moving in a predicted
trajectory towards the landing pad. Hence, the UAS could take action well before the obstacle enters the landing pad
and alert the planning/control module to stop descending. Another direction of future research is to identify alternative
landing areas using the detected bounding boxes information. This would make the landing process more flexible in the
case of an emergency landing or presence of a stationary object in the landing zone.

Acknowledgement
We thank Pranav Gupta, our summer research intern from Langley High School, for collecting the test video in

Figure 11.

References
[1] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P., “Focal Loss for Dense Object Detection,” Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2017.

[2] Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Fang, J., imyhxy, Michael, K., Lorna,
V, A., Montes, D., Nadar, J., Laughing, tkianai, yxNONG, Skalski, P., Wang, Z., Hogan, A., Fati, C., Mammana, L.,
AlexWang1900, Patel, D., Yiwei, D., You, F., Hajek, J., Diaconu, L., and Minh, M. T., “ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,” , Feb. 2022. https://doi.org/10.5281/zenodo.6222936, URL
https://doi.org/10.5281/zenodo.6222936.

11

https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936

[3] Banerjee, P., and Gorospe, G., “Risk assessment of obstacle collision for UAVs under off-nominal conditions,” Annual
Conference of the PHM Society, Vol. 12, No. 1, 2020, p. 9. https://doi.org/10.36001/phmconf.2020.v12i1.1194.

[4] Hunter, G., Wargo, C. A., and Blumer, T., “An investigation of UAS situational awareness in off-nominal events,” 2017
IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 2017, pp. 1–10. https://doi.org/10.1109/DASC.2017.8102038.

[5] Blumer, T., Wargo, C., and Hunter, G., “UAS situation awareness shortcomings, gaps, and future research needs,” 2018
Integrated Communications, Navigation, Surveillance Conference (ICNS), 2018, pp. 2G1–1–2G1–8. https://doi.org/10.1109/
ICNSURV.2018.8384850.

[6] Yang, X., Murphy, M., Brittain, M. W., and Wei, P., “Computer Vision for Small UAS Onboard Pedestrian Detection,” AIAA
AVIATION 2020 FORUM, 2020. https://doi.org/10.2514/6.2020-3270, URL https://arc.aiaa.org/doi/abs/10.2514/6.2020-3270.

[7] Lusk, P. C., Glaab, P. C., Glaab, L. J., and Beard, R. W., “Safe2Ditch: Emergency Landing for Small Unmanned Aircraft
Systems,” Journal of Aerospace Information Systems, Vol. 16, No. 8, 2019, pp. 327–339. https://doi.org/10.2514/1.I010706,
URL https://doi.org/10.2514/1.I010706.

[8] Niedfeldt, P. C., Ingersoll, K., and Beard, R. W., “Comparison and Analysis of Recursive-RANSAC for Multiple Target
Tracking,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 2017, pp. 461–476. https://doi.org/10.
1109/TAES.2017.2650818.

[9] Dalal, N., and Triggs, B., “Histograms of oriented gradients for human detection,” 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, 2005, pp. 886–893 vol. 1. https://doi.org/10.1109/CVPR.2005.177.

[10] Felzenszwalb, P., McAllester, D., and Ramanan, D., “A discriminatively trained, multiscale, deformable part model,” 2008
IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8. https://doi.org/10.1109/CVPR.2008.4587597.

[11] Girshick, R., Donahue, J., Darrell, T., and Malik, J., “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. https://doi.org/10.
1109/CVPR.2014.81.

[12] Girshick, R., “Fast R-CNN,” Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE Computer
Society, USA, 2015, p. 1440–1448. https://doi.org/10.1109/ICCV.2015.169, URL https://doi.org/10.1109/ICCV.2015.169.

[13] Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,”
Advances in Neural Information Processing Systems, Vol. 28, edited by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-
Paper.pdf.

[14] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You Only Look Once: Unified, Real-Time Object Detection,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[15] Zhu, P., Wen, L., Bian, X., Ling, H., and Hu, Q., “Vision Meets Drones: A Challenge,” CoRR, Vol. abs/1804.07437, 2018.
URL http://arxiv.org/abs/1804.07437.

[16] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[17] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S., “Feature Pyramid Networks for Object Detection,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[18] Redmon, J., and Farhadi, A., “YOLO9000: Better, Faster, Stronger,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[19] Fu, C., Liu, W., Ranga, A., Tyagi, A., and Berg, A. C., “DSSD : Deconvolutional Single Shot Detector,” CoRR, Vol.
abs/1701.06659, 2017. URL http://arxiv.org/abs/1701.06659.

[20] Yang, G., Feng, W., Jin, J., Lei, Q., Li, X., Gui, G., and Wang, W., “Face Mask Recognition System with YOLOV5 Based on
Image Recognition,” 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 2020, pp. 1398–1404.
https://doi.org/10.1109/ICCC51575.2020.9345042.

[21] He, K., Zhang, X., Ren, S., and Sun, J., “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 37, No. 9, 2015, pp. 1904–1916. https://doi.org/10.1109/
TPAMI.2015.2389824.

12

https://doi.org/10.36001/phmconf.2020.v12i1.1194
https://doi.org/10.1109/DASC.2017.8102038
https://doi.org/10.1109/ICNSURV.2018.8384850
https://doi.org/10.1109/ICNSURV.2018.8384850
https://doi.org/10.2514/6.2020-3270
https://arc.aiaa.org/doi/abs/10.2514/6.2020-3270
https://doi.org/10.2514/1.I010706
https://doi.org/10.2514/1.I010706
https://doi.org/10.1109/TAES.2017.2650818
https://doi.org/10.1109/TAES.2017.2650818
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2008.4587597
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
http://arxiv.org/abs/1804.07437
http://arxiv.org/abs/1701.06659
https://doi.org/10.1109/ICCC51575.2020.9345042
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824

[22] Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., and Yeh, I.-H., “CSPNet: A New Backbone That Can
Enhance Learning Capability of CNN,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2020.

[23] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., and Marín-Jiménez, M. J., “Automatic generation and detection
of highly reliable fiducial markers under occlusion,” Pattern Recognit., Vol. 47, No. 6, 2014, pp. 2280–2292.

[24] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L., “Microsoft COCO: Common
Objects in Context,” Computer Vision – ECCV 2014, edited by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Springer
International Publishing, Cham, 2014, pp. 740–755.

[25] Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., and Goodrich, M., “Common metrics for human-robot
interaction,” Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, 2006, pp. 33–40.

[26] Mumm, J., and Mutlu, B., “Human-robot proxemics: physical and psychological distancing in human-robot interaction,”
Proceedings of the 6th international conference on Human-robot interaction, 2011, pp. 331–338.

[27] Burke, M., and Lasenby, J., “Pantomimic gestures for human–robot interaction,” IEEE Transactions on Robotics, Vol. 31, No. 5,
2015, pp. 1225–1237.

13

	Introduction
	Related work
	Methods
	Dataset description and details
	Deep learning model selection
	RetinaNet
	YOLOv5
	Comparison of YOLOv5 and RetinaNet

	Landing pad with ArUco markers and its detection
	Landing pad safety checking algorithm

	Results
	Training and evaluating the deep learning models
	Landing pad detection and safety checking

	Limitations
	Conclusion and Future Work

