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Abstract—We introduce a novel framework to automate flight
planning processes using large language models (LLMs) to identify
flight operator’s preferences. Our framework integrates the recent
advancements in LLM and prompt engineering, low-altitude
wind hazard forecasts, flight mission energy estimation, and pre-
departure strategic deconfliction. First, our approach begins with
the forecast of wind hazard polygons to ensure safety in flight
planning. Second, we generate a diverse set of candidate flight
plans to avoid these wind hazard polygons. The flight plan features
include total flight distance, cruising altitude, flight mission energy
consumption, and number of waypoints. Third, human flight
operator specifies their preferences through natural language
prompts or plain words, which are fed to the LLM to extract
and prioritize these features. Our framework then evaluates
and scores each flight plan based on extracted user-defined
preferences, recommending the flight plan that best matches the
flight operator’s needs. For the purpose of demonstration, we focus
on a flight planning use case for an electric vehicle take-off and
landing (eVTOL) aircraft in an advanced air mobility (AAM)
mission in Dallas-Fort Worth area. Our simulation experiments
show the effectiveness of this approach in generating personalized,
safe, and efficient flight plans. To our best knowledge, this work is
among the first attempts using LLMs to enable a human-centric
flight planning automation for AAM operations.

Index Terms—Flight planning, Large Language Model, Wind
hazard forecast, Advanced air mobility

I. INTRODUCTION

Safe and efficient flight planning is essential in air operations
to ensure the safety of airspace users. Both the European
Aviation Safety Authority (EASA) and the Federal Aviation
Administration (FAA) forecast a significant rise in small un-
manned aircraft system (sUAS) operations and electric vertical
takeoff and landing (eVTOL) aircraft operations in the near
future, respectively [1], [2]. With the anticipated high-density
and highly-automated operations in sUAS package delivery and
eVTOL passenger transportation, an automated and scalable
flight planning system is much needed.

We propose a decision-support solution for flight planning
automation powered by large language models (LLMs) to
meet this end. Our approach keeps the human operator in the
loop by identifying their flight mission preferences from their
interactions with the LLM. The proposed concept minimizes
the human operator workload by integrating mission planning
information such as wind hazard forecasts, flight route genera-
tion, flight mission energy consumption estimation, and LLM.

Human workload is further reduced by only providing natural
language inputs when interacting with the automation.

In this paper, we focus on eVTOL flight planning in advanced
air mobility (AAM) operations. We propose a framework that
utilizes our customized A* algorithm for flight route generation
avoiding wind hazards. We generate a diverse set of candidate
flight plans with different features such as cruising altitudes,
total distance, flight mission energy consumption, and number
of waypoints. These flight plan features F , flight operation
context S, and human operator’s prompts P are then fed to the
LLM to identify the human’s preference of the flight mission.
The LLM parses the operator prompt and outputs the preference
weights. The preference weights are used to compute and rank
the score function of each candidate flight plan. The flight plan
with the highest score is selected to recommend to the human
operator for their review, modification or confirmation.

This paper makes the following key contributions:
• We leverage LLMs to build a human-centric flight plan-

ning automation framework against wind hazards, making
our team one of the first to use LLMs for personalized
flight planning optimization in aviation operations.

• Our flight planning automation integrates our recent ad-
vancements in wind hazard forecasts, flight route genera-
tion, and flight mission energy estimation, enhancing the
safety and efficiency of eVTOL flight planning.

• We set up simulation experiments with practical airspace
data, wind forecast results, and realistic aircraft perfor-
mance data in the Dallas-Fort Worth area, evaluating the
system’s performance under various wind hazard scenar-
ios and different human operator prompts. We provide
a comprehensive analysis of the recommended routes,
highlighting the system’s capability and limitations.

The remainder of this paper is organized as follows: Section
II provides a review of the background and related work. In
section III, we describe the wind hazards forecasting model.
Section IV discusses the flight route generation process with our
customized A* algorithm. Section V presents steps for estimat-
ing flight mission energy consumption for each generated flight
plan. In section VI, we introduce a framework for automating
the flight planning process with LLM. Simulation experiments
and demonstrations are presented in section VII. Section VIII
concludes the paper.
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Figure 1: The proposed automation process of using a LLM for flight planning. The LLM interprets the flight operator prompt
in natural language and assigns weights to the flight plan features such as total flight distance, cruising altitude, flight mission
energy consumption, and number of waypoints. In addition, to better gain human operator’s trust, the LLM provides reasoning
and logic for its decision. The preference weights w1, w2, w3, w4 are used to compute and rank the scores of all candidate flight
plans. The flight plan with the highest score is recommended to the flight operator for their review, modification and confirmation.

II. BACKGROUND AND RELATED WORK

A. Motion Planning and Flight Route Generation

There is a rich body of literature for motion planning
and route generation for robots, ground vehicles and aircraft.
Rapidly-exploring Random Tree (RRT) is one of the most pop-
ular algorithms that has been extended to many variants. Our
approach enhances the finite node concept presented by [3] to
improve computational efficiency and memory usage. The rope
pull method described in [4] optimizes the generated routes by
eliminating unnecessary turns or waypoints through simulating
a rope pull. Essentially, routes generated via RRT and RRT* [5]
can be optimized by directly connecting points with a line of
sight without intersecting obstacles. Similar to RRT methods,
Probabilistic Road Map (PRM) [6] samples randomly from the
configuration space. Unlike RRT, PRM constructs a practical
graph for navigating a region, followed by a query phase using
a path-finding algorithm to determine a valid route. Due to the
random nature of node addition, RRT and PRM families are
efficient and tractable, but they cannot guarantee the optimal
solution. For dynamic environments where obstacles may move
or change, D* and D*-Lite [7], [8] offer efficient solutions for
these partially known environments. The A* search algorithm
[9] is a path search and graph traversal algorithm with a worst-
case complexity of O(bd), where b is the branching factor and
d is the depth of the desired goal. It prioritizes exploring nodes
that minimize f(n) = g(n)+h(n), where h(n) is the heuristic
value which is commonly the direct distance from the current
node Γn to the goal node Γgoal and g(n) is the shortest distance
from the start node Γstart to Γ(n). Here n represents the index
of a node.

B. Estimating Flight Mission Energy Consumption

The current body of literature exploring the power consump-
tion of eVTOLs is limited; nevertheless, some prior works
have addressed this issue in different contexts. Notably, [10]
proposed a power consumption model for hybrid eVTOL
aircraft covering the hover, climb, cruise, and descent phases of
flight. Likewise, [11] developed a power consumption model for
fixed-wing eVTOL aircraft. However, neither model accounts
for detailed factors such as aircraft dynamics, wind conditions,
and flight plans. Therefore, in this paper, we adopt a more
realistic power consumption model developed by [12], which
considers these crucial flight and aircraft characteristics.

Moreover, the power consumption model proposed by [12] is
widely used in the AAM domain. For instance, [13] utilized this
model to estimate charging demands at vertiports. Similarly,
[14] applied the model to conduct hardware-in-the-loop battery
prognostics for AAM operations. Additionally, [15] employed
the model to perform energy-aware traffic management for
AAM. In this paper we will adopt the methods in [12], [13] in
our proposed flight planning framework. A detailed review of
this power consumption model is presented in Section V.

C. Large Language Models

LLMs are transformer-based language models that typically
have enormous parameters, numbering in the hundreds of
billions. These models are capable of text generation and
comprehension [16], which allows them to perform complex
tasks. OpenAI has reached significant milestones with the
development of GPT-3.5 and GPT-4 [17], showcasing sub-
stantial improvements in natural language understanding and
generation. LLMs exhibit remarkable human-like capabilities
and demonstrate strong proficiency in robotic manipulation
[18], multi-modal understanding [19], and autonomous driving



[20]–[22]. In [20], a framework was introduced that leverages
LLMs, combining a Reasoning and a Reflection module to
enable the system to make decisions based on common-sense
knowledge and continuously evolve. The integration of LLMs
to mimic human-like decision-making in autonomous driving
was explored in [21], enhancing situational understanding and
interaction with human drivers. An LLM-based framework
capable of performing close-loop autonomous driving in re-
alistic simulators was proposed in [22]. According to our best
knowledge, there is little research on using LLMs for flight
planning in the aviation domain.

III. WIND HAZARDS FORECASTING MODEL

A deterministic forecast was generated with Version 4.2
of the National Center for Atmospheric Research’s (NCAR’s)
open-sourced Weather Research and Forecasting (WRF) model
[23] to provide high spatial-resolution gridded wind informa-
tion. The model simulates the weather conditions by assuming
initial and boundary conditions and solving a set of partial
differential equations. WRF produces a range of weather data,
including temperature, wind, precipitation, humidity, and many
other products over a full 3-dimensional volumetric grid rang-
ing out to an assigned forecast horizon. An adapted version
of WRF was developed by MIT Lincoln Laboratory run on the
Lincoln Laboratory Supercomputer Center (LLSC) [24], a high-
performance computing cluster, to accelerate the generation of
high-resolution forecasts.

A 100 m grid spacing was used to capture abrupt changes
in wind conditions. By projecting at this granularity, the WRF
forecasts are able to model a significant variability within the
wind field due to turbulence within the boundary layer that
may not be accounted for by higher-resolution forecasts such
as the High-Resolution Rapid Refresh Model (HRRR). Kernel
density estimation was applied to assess the probability that the
wind speed exceeded a certain value based on the information
in the forecast. A thresholding process was then used to iden-
tify regions of airspace where such conditions occurred. The
Density-Based Spectral Clustering of Applications and Noise
(DBSCAN) algorithm was then used to consolidate adjacent
polygon regions within close proximity of one another [25].

IV. FLIGHT ROUTE GENERATION

For flight route generation, we customized the A* algorithm,
which is commonly used in route planning tasks to achieve a
near optimum. Other path planning or trajectory planning algo-
rithms are also compatible and can be used in our framework.

A. Point Expansion

The environment where our A* algorithm is implemented
is not restricted to a grid or discrete map. We traded off the
enhanced efficiency of a pre-defined grid of nodes for a given
airspace region, which reduces the overall memory usage of
the search.

We constructed a graph during the node expansion phase,
with introduced nodes adhering to specific rules. To minimize
sharp-angled turns in our flight plan, nodes are generated only

Figure 2: New nodes are iteratively created along the arc
subtended by the angle α, with the center of the arc extending
the path from the current node Γn to the next node Γn+1. Here
n represents the index of a node.

within a finite arc defined by a radius r and an angle α, with
the center of the arc extending the line Γn → Γn+1 as depicted
in Figure 2. To limit the search space, nodes inserted within a
certain distance of already explored nodes are considered the
same. In such cases, the g(n) values are compared, and if the
inserted node has a lower g(n) value, the explored node’s value
is updated and re-expanded to ensure route optimality.

For any previously explored points, the heuristic h(n) needs
to be calculated only once. As described in Equation 2, the
heuristic function does not consider any information about
previously visited nodes. Since the heuristic function is the most
computationally demanding aspect of this approach, calculating
it just once significantly improves computation speed.

During the expansion phase, nodes are classified as either
valid or invalid. A valid node exists within the airspace region
and has a valid connection to its parent node. A valid connec-
tion is one that does not violate airspace constraints or intersect
with any obstacles. In this paper, the obstacles are the wind
hazard polygons. Conversely, a node with an invalid connection
to its parent node that intersects with airspace constraints or
a wind hazard polygon. To clarify, an invalid node is any
node located within or too close to a wind hazard polygon
or outside the airspace region or map boundaries. Nodes with
invalid connections are handled differently; instead of being
excluded from expansion, they are immediately added to the
closed list. This approach allows for pre-calculation and storage
of the heuristic, reducing the number of calculations needed if
the node is reached again via a safe route.

B. Heuristic Function

The heuristic function h(n) employed in our customized
A* algorithm modifies the technique suggested in [26]. This
approach initially determines the angle from the node (Γn) to all
vertices of the wind hazard polygon Zj , as shown in Equation 1.
The forecasted wind hazard polygons could be concave, posing
a challenge for the route-generation algorithm.

Θ(Γn, Zj) = {θ(Γn, Z
i
j)− θ(Γn,Γgoal) | ∀i ∈ Zj} (1)

This results in a positive value if the point is to the right of the



Figure 3: The heuristic for a point with an obstructed line
of sight due to a non-convex wind hazard polygon involves
calculating the distance to the nearest extreme point on the
obstructing polygon with the smallest angle, followed by the
distance to the goal. This path is denoted by β, while the path
α is not used since the distance θα > θβ .

direct line Γn → Γgoal, and a negative value otherwise. From
this set, the extremes are determined, identifying the points
furthest left and right of the line Γn → Γgoal. This is achieved
by finding the minimum and maximum values in Θ(Γn, Zj).
The heuristic, shown in Equation 2 and illustrated in Figure 3,
is the distance between Γn and the extreme vertex Z∗

j , whose
absolute angle is the smallest from the line Γn → Γgoal, plus the
distance from Z∗

j to Γgoal. This value is further multiplied by
ω, where 1.1 ≤ ω ≤ 1.5, which enhances the A* algorithm’s
performance by prioritizing exploration of points closer to the
goal.

h(n) = ω
(
d(Γn, Z

∗
j ) + d(Z∗

j ,Γgoal)
)

(2)

V. ESTIMATING FLIGHT MISSION ENERGY CONSUMPTION

In this section, we provide a review of background knowl-
edge and formulation of the energy consumption model for an
eVTOL aircraft. We first introduce the point mass guidance
model of eVTOL aircraft as presented in [12]. Following this,
we describe the energy consumption model used to estimate
the total energy required for the flight mission.

A. Aircraft Model

The eVTOL aircraft lateral flight dynamics model can be
shortly described as:

ẋt = ξ(xt, ut) (3)

In this model, xt ∈ R2 and ut ∈ R3 represent the state and
control input of the aircraft at time t, respectively. This model
can capture the cruise phase of the flight mission. The states
of the model are x = [λ, τ, V, ψ], where λ is the latitude, τ
is the longitude, V is the true airspeed, and ψ is the heading
angle w.r.t. north. The control inputs of the model are the net
thrust (T ), the rotor tip-path-plane pitch angle (θ), and the rotor
tip-path-plane roll (bank) angle (ϕ).

dV

dt
=
T cosϕ sin θ −D

m
(4)

V
dψ

dt
=
T sinϕ

m
(5)

(Rearth + h)
dλ

dt
= V cosψ (6)

(Rearth + h) cosλ
dτ

dt
= V sinψ (7)

The multi-rotor aircraft is assumed to have four rotors [27] and
the net thrust (T ) generated by the aircraft is a sum of thrusts
generated by each motor (Trotor). Therefore, T = 4Trotor, and
parasite drag (D) on the multi-rotor eVTOL is calculated as
D = 1.1984ρV 2

2 , where ρ is the density of air.

B. Power Consumption Model

The power consumption model we use to compute the
mission-level energy requirement is based on momentum theory
for rotorcraft, adopted from [12] and [28]. Below, we summa-
rize the main components of this model. Assuming quasi-steady
flight, the instantaneous power required for forward cruise flight
at a constant altitude is the sum of induced power, parasite
power, and profile power:

Prequired = Pinduced + Pparasite + Pprofile (8)

The induced power (Pinduced) is the total of the induced power
losses from each rotor (Pinduced rotor). Therefore, Pinduced is:

Pinduced =

4∑
n=1

(Pinduced rotor)n = κ

4∑
n=1

(Trotor)n(νi)n, (9)

where κ is the induced power correction factor and νi is the
induced velocity. The parasite power loss (Pparasite), which
represents the power required to propel the aircraft forward
at a constant altitude, is given by:

Pparasite = TV sinα, (10)

where α is the angle of attack between the air stream and the
rotor disk (tip-path-plane). The profile power loss (Pprofile) is
given as:

Pprofile =
ρArotor(ΩR)

3σCd meanFP

8
, (11)

where Ω is the rotational velocity of the rotor blades, σ is the
thrust-to-weight solidity ratio, Cd mean is the mean blade drag
coefficient, and FP is a function accounting for the increase in
blade section velocity due to rotor edgewise and axial speed.

Finally, we can write the instantaneous power required
Prequired in forward flight as:

Prequired = κ

4∑
n=1

(Trotor)n(vi)n +
ρArotor(ΩR)

3σCd meanFP

8

+TV sinα (12)



Table I: Performance data of the eVTOL aircraft [27]

Parameter (Unit) Symbol Value

Rotor radius (m) R 4.0
Rotor aria (m2) Arotor 50.26

Mass (kg) m 2, 940
Thrust-to-weight solidity ratio σ 0.055

Mean blade coefficient Cd mean 0.0089
Blade section velocity increase function FP 0.97

Correction factor κ 1.75
Rotational velocity (rad/sec) Ω 30.12

Maximum power (kw) Pmax 494.25

C. Assumptions and Constraints

In this paper, we consider the following two mission require-
ments and path constraints for each flight mission. First, the net
vertical force on the eVTOL aircraft is zero, as we focus on
the cruise phase.

T cosϕ cos θ = mg (13)

Second, the trajectories that the aircraft follow to fly between
waypoints are governed by the great-circle trajectory:

(V sinψ)(sinλ2 cosλ1 − sinλ1 cosλ2 cos(τ2 − τ1))

− (V cosψ)(sin(τ2 − τ1) cosλ2) = 0 (14)

D. Energy-optimal Guidance Law Design

Having established the power consumption model and per-
formance requirements, we now focus on determining the
guidance law (ut) that lead to minimum energy consumption
for a flight mission. To achieve this, we formulate the following
optimal control problem, aiming to minimize mission-level
energy consumption while incorporating the aircraft dynamic
model as constraints.

min
∀t∈[0,Tf ]

∫ Tf

0

(Prequired)dt (15)

subject to
ẋt = ξ(xt, ut),

T cosϕ cos θ −mg = 0,

(V sinψ)(sinλ2 cosλ1 − sinλ1 cosλ2 cos(τ2 − τ1))

− (V cosψ)(sin(τ2 − τ1) cosλ2) = 0

(16)

Solving the optimal control problem described above yields
the optimal energy consumption at a fixed altitude and cruise
speed. Therefore, to estimate the optimal energy consumption
for the generated candidate flight plans from Section IV, this
optimal control problem must be solved for each candidate
flight plan by varying cruise speeds. In this paper, we utilized
an open-source C++ library called PSOPT [29] to numerically
solve the nonlinear programming problem using a sparse non-
linear programming solver.

The resulted minimum energy for each generated candidate
flight plan will be listed as the estimated total energy consump-

tion in Table I. More detailed flight mission energy consump-
tion model will be explored in our future work by adding the
energy consumption of climbing phase and descending phase
of the flight.

VI. AUTOMATING THE FLIGHT PLANNING PROCESS WITH

LARGE LANGUAGE MODEL (LLM)

In this section we describe the framework for using the LLM
to automate flight planning under wind hazards. A diverse set
of candidate flight plans is generated (see Section IV) given
the forecasted wind hazard polygons (see Section III). These
flight plans are characterized by various features, including total
flight distance (D), cruising altitude (A), flight mission energy
consumption (E), and number of waypoints (W). Each of these
features can significantly impact the flight plan’s suitability
depending on the flight operator’s specific preferences.

To capture the flight operator preferences, our framework
(see Figure 1) allows the operator to input prompts specifying
their desired features in a flight plan. These prompts can be
expressed in natural language, such as, “I prefer a flight plan
with the lowest energy consumption,” or “The route should
avoid high altitudes.” To ensure the LLM behaves consistently
and aligns with specific user needs, we use system messages S
to provide the flight operation context to the LLM, regulate the
behavior of the LLM assistant, and provide specific instructions,
enhancing the overall user interaction experience [30]. These
instructions will help the LLM assistant to better understand
its role, what its task is with a given prompt, and how it
should generate a response as a flight operator assistant. For
instance here is an example of a system message: “You are an
expert on determining the best flight plan flying from origin to
destination. Given an input question, determine the weights for
these features of a flight plan.”

The LLM, in this work OpenAI’s GPT-4o interprets the
flight operator prompt and turns it into a structured query. Let
P represent the operator prompt or human input in natural
language, LLM(P, F, S) the model output of the prompt, and
F the set of flight plan features D,A,E,W . The LLM model
processes the input to prioritize the features according to the
operator’s preferences:

[w1, w2, w3, w4, reasoning] = LLM(P, F, S) (17)

Subsequently, our framework evaluates the candidate flight
plans based on the identified flight operator preferences. Each
candidate flight plan FPi is scored based on how well it aligns
with the operator’s specified preference. The scoring function
Ψ is formulated as:

Ψ(FPi) = −(w1D̃i + w2Ãi + w3Ẽi + w4W̃i), (18)

where w1, w2, w3, and w4 are the preference weights obtained
from the LLM’s interpretation of the flight operator prompt,
reflecting the importance of each feature. These weights should
add up to one. X̃ represents the standardized feature X by
removing the mean and scaling to unit variance.



The flight plan with the highest score, indicating the best
match to the flight operator’s preferences, is then suggested
and displayed to the operator. This recommendation system
leverages the powerful natural language understanding capa-
bilities of the LLM to ensure that the suggested flight plan
aligns closely with operator preferences.

VII. SIMULATION RESULTS AND DEMONSTRATION

We focus on eVTOL aircraft operation and flight planning in
AAM use case. The proposed framework utilizes practical wind
hazard forecasts from MIT Lincoln Laboratory in Dallas-Fort
Worth area. The wind hazard polygons were at four different
altitudes (1000, 1500, 2500, and 3000 ft). The origin vertiport
and destination vertiport are colored in red and green respec-
tively, as illustrated in Figure 4. We varied the distance limit
parameter between each pair of waypoints in our customized
A* algorithm described in Section IV, enabling the generation
of flight plans with different numbers of waypoints (W ) and
total distance (D). We also ran the flight route generation
algorithm at different altitudes (A) to provide more diverse
candidates. Each candidate route was provided to the procedure
described in Section V to estimate the total energy consumption
(E).

Figure 4: Demonstration of wind hazard polygons: a flight
planning example in Dallas-Fort Worth airspace showing four
different wind hazard polygons at various altitudes: 1000 ft
(green), 1500 ft (yellow), 2500 ft (red), and 3000 ft (magenta).
Brown area is the overlap of 1000 and 2500 ft altitudes.

All experiments were conducted on a MacBook Pro equipped
with an Intel 2GHz i5 processor and 32GB of memory. The
GPT-4o API was used to obtain preference weights based on
the flight operator prompts.

A summary of the generated candidate flight plans is pre-
sented in Table II. An example of a generated candidate
flight plan is illustrated in Figure 5. This table provides an
overview of the candidate flight plans generated under different
conditions, highlighting the flexibility and adaptability of the
system in handling various wind hazard scenarios and different
flight operator needs.

Additionally, Table III showcases examples of flight operator
interactions with the LLM and the preference weights. These

Figure 5: Demonstration of flight route generation: a flight plan-
ning example given a set of wind hazard polygons at 1500 ft.
The blue route is the point-to-point flight plan overlapping with
the wind hazard polygon, where the intersection segment is
highlighted in red. The route is a generated candidate flight
plan provided by the customized A* algorithm.

examples illustrate how flight operator inputs were understood
and parsed into specific weights, which in turn influenced the
flight plan sorting and selection process. In all of the examples,
the LLM was able to successfully assign proper weights based
on flight operator preferences. In Table III we avoided adding
the reasoning part from the LLM for better demonstration
purposes. But they are all part of LLM’s output and available
to show based on human flight operator’s need. For instance,
the reasoning for the weights assignment of the prompt “I
want to minimize fuel use and have a moderately smooth
flight.” is “The user prioritizes minimizing fuel use, so energy
consumption (w3) has the highest weight. A moderately smooth
flight is related to maintaining an optimal altitude, giving it a
moderate weight (w2). Distance and number of waypoints are
not mentioned, so their weights are set to zero.”

Here are some remarks and observations from our prompt
engineering with the LLM: Since flight plan 7 has the lowest
distance and energy consumption it has been recommended in
all of the flight operator’s prompts that are related to either of
these features. There are some words that convey an ambiguous
meaning even for a human interpreter. In those cases, some of
the assigned weights might not be reproducible. For instance,
it is not clear if the term “smooth flight” is related to having
a smaller number of waypoints or flying at lower altitudes. In
this case, for some prompts, the LLM assigned a high weight
to altitude and to the number of waypoints for some others.

Limitations: Although the flight operator preference is com-
pletely satisfied through the resulting preference weights, the
balance between the weights is not consistent at each run. This
could be improved by setting a fixed random seed in order to
have more consistent answers from the LLM.

VIII. CONCLUSION

In this paper, we presented an innovative approach for flight
planning automation that integrates wind hazard forecasts, flight
route generation, flight mission energy consumption estimation,
and LLM. By predicting wind hazard polygons, we ensured the
safety and efficiency of generated flight plans. The generated
flight plans were evaluated based on their features and then



Table II: Candidate flight plans with their features

Flight Plan Index Total Distance (km) Cruising Altitude (ft) Energy Consumption (MJ) No. of Waypoints

1 251.96 1000 1108.57 10
2 279.60 1000 1230.18 11
3 280.27 1000 1233.11 13
4 277.69 1000 1221.78 15
5 261.10 1500 1148.77 9
6 249.01 1500 1095.56 10
7 246.48 1500 1084.43 11
8 248.16 1500 1091.84 14
9 280.99 2500 1236.27 10

10 278.97 2500 1227.38 11
11 278.07 2500 1223.45 13
12 277.01 2500 1218.78 15
13 252.77 3000 1112.14 9
14 251.96 3000 1108.57 10
15 251.84 3000 1108.04 12
16 250.46 3000 1101.97 14

(D) Total Distance, (A) Cruising Altitude, (E) Energy Consumption, and (W ) No. of Waypoints

Table III: Examples of flight operator prompts, resulted preference weights obtained by the LLM, and the selected flight plan
(FP) with highest score

Explicit Prompts
Prompt from the flight operator: w1(D) w2(A) w3(E) w4(W ) Selected FP

Focus on minimizing energy consumption.
Distance is secondary.

0.2 0 0.8 0 7

Prioritize distance. Altitude and energy con-
sumption are less important.

0.6 0.15 0.15 0.1 7

Prioritize minimizing energy consumption.
Waypoints and distance are less important.

0.1 0 0.7 0.2 7

Optimize for the shortest distance. Altitude
and energy consumption are flexible.

1 0 0 0 7

Implicit Prompts

Smooth flight is my main concern. Other
factors are less critical.

0 1 0 0 1

I prefer a smooth flight with fewer stops, even
if it takes a bit longer.

0.2 0 0 0.8 13

I want to minimize fuel use and have a
moderately smooth flight.

0 0.4 0.6 0 1

A smooth, efficient flight with minimal stops
is ideal.

0.2 0 0.5 0.3 7

prioritized based on a flight operator’s preferences. The LLM’s
capability to interpret user prompts allowed for personalized
flight plan recommendations, aligning closely with user-defined
preferences. Our experimental results demonstrated the effec-
tiveness of this approach in optimizing flight plans not only
for safety and efficiency but also in accordance with individual
operator needs.

While the current study provides a solid foundation for
human-centric flight planning automation, there are several av-

enues for future research. One potential direction is to enhance
the LLM’s ability to interpret more complex and nuanced user
prompts, possibly incorporating feedback loops to continuously
refine the model’s accuracy. Additionally, expanding the feature
set to include dynamic weather conditions, real-time air traffic
data, and environmental impact could further optimize flight
plan recommendations.
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