Period	

WORKSHEET – GREATEST INTEGER FUNCTION

Evaluate:

1.	 5.28 =	6. .25 =
2.	 5 =	7. $\left\ \frac{10}{3}\right\ =$
3.	2.99 =	80.5
4.	$\ 0\ =$	9. -2.99 =
5.	 -1.7 =	10. 1000 =

11. A store will deliver a sofa for \$3.00 per mile including fractions of a mile. (For example, 25.5 miles is 3(25) = 75.) There is no charge within the first mile. Use the greatest integer function to express C, the delivery cost, as a function of x, the number of miles from the store. Sketch a graph of this function for $0 \le x \le 5$.

Make a table of values and sketch the graph of the resulting function.

Function:

12. The cost of sending an overnight package from College Station to Dallas is \$10.00 for a package under one pound and \$2.50 is added at one pound and each additional whole pound. Use the greatest integer function to create a model for the cost C of overnight delivery of a package weighing x pounds. Sketch the graph for packages up to 7 pounds.

Make a table of values and sketch the graph of the resulting function.

Function:

Find the cost of sending a 15 pound 9 ounce package.

13. Graph
$$f(x) = \|x\|$$

