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Abstract

Blockchain systems exhibit a variety of features and internal structure. As blockchain technology
moves beyond the early (though still dominant) blockchains to applications in finance, national currencies,
and enterprise information systems, it is useful to look at blockchain system structure from the standpoint
of database systems. This paper seeks to describe blockchain structure in terms inspired by the traditional
3-tier database architecture and the system structure of full-featured database systems. Unlike many
published blockchain white papers, we seek a fine-grained level-based division of data and of functionality
in order to enable both a mixing of innovative concepts from existing systems, and the identification
of focused subareas for future research. After addressing these issues in terms of data organization,
validation, validator selection, and general governance, we consider the matters of privacy and external
regulation; the former a traditional motivation for blockchains, and the latter an increasing focus of
emerging government-overseen deployments. We conclude by applying our concepts to multi-blockchain
systems and frameworks that enable them.

1 Introduction

Blockchain burst into wide awareness with the release of Bitcoin in 2009[27]. In a rapid series of new
blockchain releases, blockchain systems evolved towards a richer model of data and computation. Ethereum[9]
marked the transition of blockchain from a log of currency debit-credit transactions to a new type of “world-
wide compute engine” that could serve as a platform for other systems (now known as layer-2 systems).
Hyperledger Fabric[3] is perhaps the leading example of the concepts of blockchain serving as a foundation
for decentralized enterprise-class information systems. These three are just the most notable of many such
systems and more continue to appear.

At the most fundamental level, a blockchain system stores data and supports transactions over those data,
and, thus, can be considered a form of database system.[1] From that starting point, this paper attempts to
describe blockchain systems using the terminology and conceptual foundations of database system research.
There are several reasons for doing this:

• Blockchain system development is repeating some of the history of database development in a com-
munity where classic database concepts are less familiar. By casting blockchain system concepts in
database terms, this paper seeks to point out areas where the database research community can impact
existing technology trends in the blockchain community.

• Enterprises are looking increasingly at blockchain solutions for a variety of applications. Some, unfor-
tunately, are drawn to blockchain by the hype and its perceived trendiness. This paper seeks to provide
an abstraction of blockchain concepts to facilitate their deployment in any database context as opposed
to suggesting deployment of a particular blockchain system that includes database-like features, such
as BigchainDB[6].

• Many published blockchain system whitepapers fail to separate out the various design decisions made.
We propose a taxonomy of blockchain system components along with a “layered” description of the
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definition motivated by the physical / logical model framework for database systems. This framework
facilitates choosing, from a list of features inspired by several existing systems, those suitable for a
particular deployment. We put the term “layered” in quotes because our taxonomy is not truly a
hierarchical layering since some systems use a more-general graph structure of our “layers”. That said,
most popular blockchain systems fit our layering in a hierarchical manner.

• Our proposed component taxonomy identifies focused areas for future research.

The motivation for this work comes from the way in which the layers and components of database systems
have been clearly defined in a way that enables research and development efforts to address a single issue
(e.g., query optimization), without having to describe an entirely new system.

We shall not provide an introduction to blockchain here. There are many such introductions in blockchain
whitepapers and in a variety of texts, including [17, 28, 35]. We also assume familiarity with Byzantine fault
tolerance[30], public-key encryption and digital signatures[11]).

2 High-Level Overview of Blockchain System Structure

Blockchain systems are often described in the literature in terms of a specific blockchain. As a result, the
data in such a system are described in manner commingled with the description of a specific data structure.
The updates to the data are most often described operationally. This is unfortunate, since the primary value
of blockchain technology is not any particular data structure (it indeed does not have be a “chain of blocks.”)
but rather a set of blockchain properties applied to a distributed database. These properties are:

• Decentralization: Control of the database in all aspects is based on consensus of a large number of
participating nodes, with provision not only for fault-tolerance but also malicious behavior by some
minority of the nodes. The degree of decentralization varies among blockchain systems and need not
be uniform across all levels and functions of the system. Decentralization is an important property of
most public blockchains (e..g., Bitcoin), but less so in enterprise-class, permissioned blockchains such
as Hyperledger Fabric.

• Tamper resistance: Any effort by a participating node to alter committed data is detectable and
actionable via the consensus mechanism.

• Irrefutability: Transactions, once submitted, are permanently traceable to their submitter (or par-
ticipants for multi-signature transactions) via digital signatures.

• Anonymity: Users of the system may keep their blockchain identities separate from their real-world
identities. The degree of anonymity varies widely from strong anonymity supported by zero-knowledge
techniques[7] to anonymity only to certain users but not to a controlling authority (as for certain
enterprise blockchains and certain central-bank digital currency proposals). Bitcoin lies between these
extremes.

Arguably, if implementors of an application have little or no interest in these properties, a traditional database
is a highly preferable deployment strategy.

A specific system may implement the above properties using a variety of data structures and algorithms,
the choice of which should ideally be separate from a definition of the desired blockchain properties.

Similarly, blockchain transactions are often described operationally, rather than in the ACID framework
familiar to database researchers and practitioners. Indeed blockchain transactions do not enjoy the full set
of ACID properties. Some of the distinctions between database transactions and blockchain transactions
are immediately obvious (e.g., the limited nature of a Bitcoin transaction), but others are subtle with
possibly unintended consequences, such as the ability of one transaction to be designed based on the code of
another transaction due to the publicly readable status of the pool of pending transactions. The interaction
of blockchain transactions can depend on whether the blockchain equivalent of the database transaction
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manager (i.e., the miner) takes an active role in choosing an ordering of transactions, possibly to its own
advantage. Such behavior is referred to as front-running.

In this paper, we attempt to structure a blockchain system in componentized and largely, though not
completely, layered framework. This componentization enables us to show how various functions within a
blockchain system control or influence behavior and to provide a framework for describing precisely what
that influence is. Our focus here is descriptive. We see this a basis for future work in a variety of areas
including:

• Design of blockchains targeted to a specific application.

• Component reuse.

• Design of effective and efficient control and oversight mechanisms in a blockchain subject to government
regulation (as in a central-bank digital currency or a blockchain seeking approval from a regulatory
authority).

• Design of regulated systems in a way that provides an easily understood degree of transparency and
perhaps limitations on central control and oversight.

The structural approach we take here is intentionally agnostic of the actual specific purpose of the
blockchain system. From the perspective of a database researcher, than may make sense but for a blockchain
system, the exclusion of purpose ignores one of the greatest motivators for public blockchains: privacy and
anonymity. The actual implementation of blockchain objectives as regards privacy and anonymity can be
described using our level-based approach. Later in this paper, in Section 10, we address how specific policies
relate to our organizational taxonomy.

3 Physical Level

Although the term blockchain arises from the linked list of blocks that forms the underlying data structure
of the Bitcoin blockchain, it is certainly possible to use any physical-level implementation to provide the
same functionality at the logical level. Several existing blockchain systems use a physical model substantially
different from Bitcoin, such as the directed-acyclic-graph model of Iota[32] (in which the DAG is called a
tangle). Hyperledger Fabric stores blockchain data in a NoSQL database. Bitcoin has used (in various
versions) both Berkeley DB and LevelDB to store index data. Ethereum clients use RockDB and LevelDB
among others.

The goal of a physical model for a blockchain is to represent the fundamental data elements of the
blockchain along with (perhaps) some data structures to facilitate standard accesses and “updates”. We
quote the term update here because blockchain immutability implies append-only operation, while in fact
the operations performed may include the semantic equivalent of an update, as is the case, for example
in an Ethereum funds-transfer operation. The exact set of fundamental data items varies by blockchain
but typically includes some representation of transactions, account balances, unspent transactions, pending
transactions, code plus associated variables or stacks, among other items.

In the typical three-tier database architecture, the physical model needs only to present an interface to
higher levels. Blockchain systems, due to their inherent distributed nature, may face an additional physical-
level compatibility requirement across different architectures and code bases. Ethereum, for example, offers
a set of clients from which the operator of a node may choose. The existence of multiple clients provides the
blockchain network with some degree of robustness to bugs in the client software. But that comes with the
requirement that the underlying data structures must have a degree of language independence.

The distributed nature of a blockchain system plus its (usually) decentralized control requires a degree
of software-upgrade compatibility at the physical level. In centrally managed systems, an upgrade is easier
to manage than in a decentralized system. Older and newer implementations may transfer blockchain data
among themselves. If that is not possible, then the upgrade would constitute a hard fork, a much more
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difficult form of upgrade to accomplish at the blockchain governance level, which we discuss in Section 9.
Existing blockchains have forked many times for physical-level implementation changes (such as block size
or off-chain storage of certain data) and disputes over these matters have led to ongoing forks of various
blockchains into separate independent chains. A better-defined physical-level interface could perhaps have
avoided some of these issues, though not, of course those that resulted from governance issues.

As a result, it may not be ideal to view the physical level as a single, independent component. Many
blockchain systems include in their physical model certain index structures that do not need cross-node data-
structure compatibility. The issues of physical-level compatibility can be reduced by separating out those
aspects of the physical model that represent data that are transferred directly among independent nodes
and those aspects that serve only the needs of local performance optimization. Expanding on this principle,
we may seek to define the physical model in a manner that permits data items to be converted simply and
rapidly from one physical representation to another. This would allow the vertical, three-tier-architecture
concept of physical data independence to be expanded to a horizontal decentralized concept of physical data
independence.

Further subtleties at the physical layer derive from the distinct requirements of light clients (as opposed
to full nodes). Light clients store much less data than full nodes and depend on full nodes for their remaining
data needs. Physical-layer compatibility is required for certain exchanged data structures (e.g., for Merkle
proofs, as we discuss next).

Up to this point, we have viewed the physical level primarily as an encoding of data describing blockchain
activity. Blockchain systems, unlike database systems, need to store additional data to secure the blockchain
from attack and to enable proofs of correctness of data returned. The exact requirements in this regard
depend on the level of trust among nodes in the blockchain system. In a database system, where trust is
absolute, no such data are needed at all. Some aspects of these security-mandated data can be abstracted at
the logical level (for example, the hash of a block), but others can be viewed as the domain of the physical
level (for example, the specific structures used to implement a Merkle tree are the domain of the physical
level). The interface between physical and logical models for Merkle trees[24] and Merkle/Patricia trees[26]
is interesting. The logical level needs to model a description of Merkle proofs and data updates (such as
balance transfers in Ethereum) even though the actual implementation of those items at the physical level
should be independent of the logical modeling of them.

Another aspect of physical-level modeling is the location of storage of blockchain data. Up to this point,
we have treated all blockchain data as if it were stored on-chain at all nodes. There are other physical storage
models that present an equivalent logical-level view. Significant volumes of blockchain data can be stored
off-chain secured by a Merkle root stored on-chain. Notable instances of this approach include Ethereum
and post-SegWit Bitcoin.

4 Logical Level

The logical level of a database describes what is stored at the physical level and how those items relate to
each other. The logical-level abstractions in the database world omit implementation details to a greater or
lesser degree depending on the model being used (more appear in the now-deprecated CODASYL DBTG
model than in the now-ubiquitous relational model). As is the case with the multiple logical models in the
database world, one can define multiple models for blockchain systems. This definitional problem is part
art and part science, since one should seek to define models broadly enough to encompass a wide variety of
existing blockchain systems.

But here too at logical level, certain properties of blockchains create interesting conceptual distinctions
from database logical modeling. Many blockchains store what amounts, in database terminology, to a simple
log. That is the case for Bitcoin, where, if one ignores the hashes stored for chain security, the data is
simply a list of transactions. That list is structured very differently from a database log (where transaction
steps are interleaved) but it is, at the highest level, a list of transactions, which appears easy to model at
the logical level. More troublesome however, is the question of what is really “in” the log. In a database
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system, log records stored only in volatile storage are not permanent. They are used in a running system
to abort a transaction, but disappear in a crash. A log record becomes permanent when it is written to
nonvolatile storage with whatever degree of redundancy is deemed necessary for permanence. There is a
similar notion in blockchain centered around the concept of finality. While some systems add a transaction
to the blockchain only when it is truly committed, most add transactions that are only likely to become
final, or permanent. That degree of likelihood increases the longer the transaction remains part of the
blockchain until the probability of its removal becomes negligibly small, leading to the transaction being
deemed final. Non-final transactions need to be visible since that is how the blockchain grows and leads to
non-final transactions becoming final. This results in a shared log among decentralized systems that lacks
the rigorous append-only structure of a database system. While the details of how this transaction log is
implemented is a physical-level issue, the semantics of this log are of critical importance at the logical level,
since those semantics influence the various applications that use the blockchain. Those semantics are also a
key part of the operation of the consensus (Section 8) and governance (Section 9) levels.

A well-designed logical level can provide a clean separation between the finality of blockchain data and how
that finality is determined. Those concepts are mixed in many current blockchain systems, such as Bitcoin,
where finality is defined based on the concept of the longest fork, even though the definition of longest fork is a
node-dependent concept whose global uniformity is only a probabilistic concept. Database log permanence is
based on a well-defined concept (typically the write-ahead log protocol), while the corresponding blockchain
concept is less deterministic.

Logical modeling can simplify the definition of cross-chain transaction semantics if some set of standard-
ized, well-defined concepts take hold across many blockchain systems. Current approaches depend directly
on blockchain-specific features such as the type of time-lock features or smart contracts available. Standard-
ization may be dismissed as mere wishful thinking, but newer blockchain implementations such as Ethereum
2 and Polkadot[8] combine aspects of cross-chain semantic issues within the more unified framework of a
single blockchain.

5 Higher-Level Modeling

In a database system, the three-tier architecture includes as its top level, the user-specific view level. Other
aspects of system operation such as the commit protocol in a centrally administered distributed database
are system-internal issues unrelated to data semantics. This is not the case for a blockchain system. The
manner in which distributed consensus is obtained and who participated in that consensus (and in what
role) are often important data items in the blockchain that are used for validation of the data. The types of
data involved in consensus and validation vary among blockchains. Those data can be part of the underlying
logical data model, but the algorithms used for consensus and validation themselves can be componentized
and abstracted. Blockchains might share the same concept of a valid block but differ on the means of selecting
a particular valid block. This leads us to separate the adding of blocks to a blockchain into multiple levels
of modeling:

1. Validation level: Section 6 discusses the description of a valid block in terms of a logical-level model,
leaving the choice of a specific implementation of validation, including any performance-improving data
structures, to either lower levels of modeling or to system-implementation details.

One aspect of block validity may be whether the block proposer is indeed allowed to make such a
proposal. This would require identifying the proposer along with proof that the proposer was selected
correctly. Some blockchain systems perform a separate consensus regarding the designated proposer of
the next block and the decision as to whether that proposed block in valid. That separate consensus
takes place using techniques described in the consensus level.

2. Validator selection level: Section 7 discusses the description of a valid set of validator nodes.
Often this is simple, as in a Bitcoin-style proof-of-work system in which every full node is a validator.
However, some systems’ key competitive advantage may lie at this level, as illustrated for example by
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Algorand’s[16] cryptographic sortition approach. The validator selection process itself may take the
form of consensus protocol. It is possible for consensus on a set of validators to use a protocol distinct
from the protocol used to reach consensus on the next block.

3. Consensus level: Section 8 discusses the protocols by which the selected set of validators reach
consensus on whatever it is on which they seek to agree. Typically this is the next block to be added
to the blockchain, but it may be some other aspect of blockchain operation, such as the set of block
validators, expulsion or slashing of misbehaving nodes, etc.

These protocols are widely varied, including fully trustful consensus (such as Raft[29] for some Hyper-
ledger Fabric deployments), variations of Byzantine consensus that permit a variety of trust models,
variations of proof-of-stake and proof-of-work, and hybridizations of these.

Most of our higher levels specify a computation rather than just data. For example, a consensus protocol
is a description of actions taken to reach consensus. Academic consensus protocols often provide a highly
abstracted definition of what is to be agreed upon and focus on the protocol. In most cases of blockchain
systems, the nature of what is to be agreed upon in a nontrivial aspect of consensus. This applies also to
governance and validator selection. In each case, we seek to identify what can be described declaratively
so that, at least in principle, one protocol could be replaced with another while not impacting the overall
framework of the system.

6 Validation Level

The validation level of a blockchain system does not have a direct analog in the database three-tier architec-
ture. It is a description, using the elements of the logical level description of the system, of what constitutes
a valid blockchain. That might be considered a concept analogous to database consistency, except that for
the most part, work on database transaction processing ignores the precise definition of consistency and
instead just assumes that, whatever consistency may mean, transactions preserve it. Thus, a database trans-
action may be modeled as a mapping from the set of all consistent database states to the set of all consistent
database states. The database-style approach to consistency does not work in a blockchain setting because it
is not assumed that transactions are correct programs that preserve consistency. That is most certainly true
in a public blockchain like Ethereum or Bitcoin,1 but may also be the case in the most trustful permissioned
blockchain settings. In even those latter high-trust environments, there is some degree of validation applied
to transactions. For those reasons, a blockchain system needs a precise definition of transaction correctness.
Furthermore, when transactions are grouped into blocks as is done by most, though not all systems (one
exception is Iota[32]), there is a need for a precise definition of a correct block.

The goal at the validation level is a declarative specification of correctness. Often the correctness criteria
reference substantial parts of the blockchain, making efficient optimization of validation an important con-
sideration. Optimization, however, is not part of the specification and different validators are free to choose
their own methods of validation.

In any blockchain system, there are syntactic requirements regarding the format of a transaction and the
structure of a block plus semantic specifications, which are more complex. A few examples follow.

• The Bitcoin model of a transaction spending the output of previously unspent transactions requires
enforcement relative to the entire history of the blockchain. If a block contains a pair of transactions
that both spend the same transaction’s output, then the ordering of those transactions determines
which is valid in the block and which is not. Pending transactions are retained for eventual addition to
the blockchain (the mempool) and so the consistency of that collection relative to the blockchain itself
must be maintained. A valid Bitcoin block must hash to a value less that the designated target value
as it existed in the blockchain system at the time the block was added.

1For example, in Bitcoin, it is not the transaction that performs a test that its inputs have not been previously spent.
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These issues are syntactic in nature even though they require good data structures for them to be
managed efficiently.

• Beyond the relatively simple issue of double-spending, there is the issue of front-running[13, 19, 33]. A
miner node may reorder transactions from the mempool to its own advantage, perhaps inserting a new
transaction of its own ahead of and/or after some other transaction. The result in this case may be a
syntactically correct block that is nevertheless inappropriate in a semantic sense. Protection against
front-running is far from ubiquitous, but one can imagine that future regulated blockchains (e.g., those
sponsored by government agencies) may have some validity rules to eliminate or reduce front-running.

• In blockchain systems in which validators are chosen by stake or by a random process, the block may
contain a cryptographic proof that the validator set was chosen correctly. This specification thus relates
to the validator selection level, but focuses only on the description of the selection process and not the
process itself.

7 Validator Selection Level

Here, our focus is on who or what does validation and not on how validation is done, nor what it means for
a block to be valid. In some blockchain systems, the specification of validator selection is declarative and
trivial: all nodes are validators. Other systems have more complex selection mechanisms. For those latter
cases, some use deterministic algorithms hard-coded into the system, while others use a consensus process
so that all nodes agree on the subset chosen to be validators. Validator selection may include selection of
a leader, as is the case is many Byzantine-consensus protocols or it may treat all validators as peers, in a
leaderless model[5].

The case of consensus-driven validator selection is interesting in its circularity. Consensus must be
achieved over a set validators but determining that set of validators requires consensus. Obviously, any real
blockchain system must be based on a cycle-breaking specification at some point in the process and most
do so in a direct, simple manner. However, a clear separation of the objective of validator selection and the
protocol for achieving consensus makes it possible to envision a rich variety of mechanisms with potentially
interesting features. We present a few such possibilities at a high level below:

• The consensus/validation cycle could be a recursive process that reduces to a base case. For a per-
missioned blockchain, that base case could be n = 1, that is, the owner of a permissioned system.
Alternatively, the base could be a randomized process, such as Algorand’s use of verifiable random
functions[16, 25]

• Certain earlier parts of the consensus/validation cycle could be “stickier” than others and persist over
several blocks or until some node or nodes object.

• Validator set selection can be an implicitly determined side effect of a consensus algorithm (e.g.,
Byzantine consensus) in which malicious or malfunctioning nodes are excluded.

8 Consensus Level

The goal of blockchain specification at the consensus level is to focus on the process of agreement. The
actual object of agreement should be an item specified at the logical or validation level.

We illustrate this separation in restating Bitcoin consensus. It is a simple, syntactic statement: the
blockchain is the longest fully valid fork in a node’s local copy of the blockchain, maintained by a gossip
protocol with peer nodes, with length ties broken in an arbitrary manner. There is no consensus protocol
beyond simple, timely gossiping. All of the issues pertaining to nonces, mining, double-spending, and so
forth, are described at the validation level.
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For many other blockchain systems, the specification of the consensus protocol is complex, perhaps a
full paper in its own right (e.g., Stellar[23, 22]). A well-described consensus protocol leaves that upon which
agreement is reached as a parameter to the consensus process. Similarly, such a specification should leave the
set of nodes participating in consensus as a parameter to the consensus process, while the consensus process
focuses on how those nodes behave. Academic papers typically meet these criteria, but blockchain white
papers often merge these issues. One frequent case of merger of these issues has to do with the response to
faulty or malicious nodes (as opposed to simply detecting and identifying them). We treat such responses
as a governance issue. Consensus creates some degree of global knowledge about nodes, and that informs
actions at the governance level. Thus actions such as exclusion from future consensus activity, slashing, etc.,
are not part of the consensus-level process. A survey of consensus approaches is given in [20].

Consensus protocols necessarily rest upon assumptions[15]. At the consensus level, those assumptions
are exactly that, and are not questioned, nor is one concerned about maintaining the validity of those
assumptions. Governance must ensure that assumptions made at the consensus level are valid (or at least
ensured with a strong level of guaranteed).

9 Governance Level

The governance level defines the true nature of a blockchain system. Whether it is a public chain, a tightly
controlled private chain, or some partially decentralized permissioned chain all are determined from the
governance model for the blockchain. Governance is the most controversial aspect of blockchain systems. It
defines how the conflicting needs of privacy, transparency, regulation, and decentralization may be combined
or traded off. Governance addresses a variety of top-level blockchain-management issues including:

• Authorization and access

– Physical membership of devices or networks in the blockchain system

– Authorized users of the blockchain system

∗ Admission: both who/what and when

∗ Removal: both who/what and why

• Rewards and/or punishment of specific users (e.g. airdrops, slashing, and removal).

• Setting system-wide parameters for lower levels

– block rewards

– validity parameters (such as the hash target for Bitcoin block validity)

Aspects of blockchain governance may be decided by a consensus mechanism among stakeholders. That
mechanism can be any consensus mechanism we discussed in Section 8. That consensus mechanism is,
in turn, subject to some sort of governance, creating a cyclic posing of the question “Who governs the
governors?”. Clearly, any actual system must have a non-recursive base case.

Other aspects of governance may be decided by a human process. Permissioned blockchain systems may
be governed by one or a group of business enterprises via an off-chain process. The power of the governing
entity may be limited in code or via a traditional business agreement. Government-run blockchains (especially
the rapidly emerging set of central-bank digital currencies (CBDC) [14, 18]) or tightly-regulated blockchains
may take this form, with the government controlling some or all aspects of the highest levels of governance.
Indeed, one reason governments may pursue blockchain-based technology is to achieve greater, not lesser,
central control of governance.

Certain cryptocurrencies have an ownership distribution that gives one or a small group of owners outsized
control over the governance process. This has often been the case with newly emerging blockchains in which
closely-held governance serves as means of securing the chain against attack. Generally, such a governance
structure includes a plan for eventual decentralization.

Governance also includes policy on trusted oracles and any processes for the validation of oracles.
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10 Privacy, Anonymity, and Identity Management

As we noted in Section 2, the levels we present in our taxonomy avoid reference to any specific purpose of
the blockchain system (beyond examples). That is appropriate for any general-purpose information system
conceptual design, but there is one category of “purpose” that is so fundamental to the motivation for
blockchains that is deserves attention: privacy and anonymity. Blockchains vary widely in their approach
to these properties. Permissioned blockchains may be secured against data access by non-members. Public
blockchains may publish the entire blockchain openly, but keep the mapping between user-ids and off-chain
entities (e.g., people) secret to all or secret to only certain governors. Related, but separate from our concern
here, is data encryption. On-chain data is mostly public and unencrypted, but certain off-chain data may
be encrypted, as in, for example, storage services such as Filecoin (https://fil.org/).

The privacy objectives themselves may be best defined in terms of our levels. As an example, it may be
considered highly important to retain the privacy of validators than that of general users in order to defend
against denial-of-service attacks against the validation process. (One such example is Algorand[16].)

Identity management is the dual of privacy. The secure connection between a blockchain identity and a
real-world identity is essential in a variety of applications, including the maintenance of public records (real-
estate ownership, motor-vehicle records, voting rolls, etc.). Regulated financial systems need to establish
this connection for know-your customer (KYC) compliance. This connection between on-chain and off-chain
identity may be public or may be private to certain levels of governance.

Whatever the objectives of a specific chain as regards issues of privacy, the question of how, and at what
level, those objectives are implemented is important. Insecurity at one level may impact guarantees made
(incorrectly) at another. Alternative implementations may be acceptable if they provide the same external
level of protection.

We see this separation of function as particularly useful as new techniques, largely based on zero-
knowledge, are developed and deployed, whether for strong privacy guarantees or to enable selective disclosure
of data only to auditors or regulatory authorities. Other zero-knowledge-based disclosures in a decentralized
enterprise blockchain system may depend on a consensus process (8).

11 Extension to Multi-Blockchain Systems

There are a vast number of cross-chain transaction systems. Lightning’s[31] framework for off-chain Bitcoin
transactions was one of the first. Privacy in such cross-chain transactions is challenging to achieve. Levels
of privacy in cross-chain transactions, including the possibility of limited disclosure is discussed in [10].
At present, a vast number of blockchains operate at what is called layer 2, running on top of an existing
blockchain. Most of these are ERC-20 tokens implemented on top of Ethereum. Most recently, there is
substantial interest in peer chains as exemplified by Polkadot[8, 36] or cooperating parallel chains as in the
design of Ethereum 2 shards. Sharded blockchains present challenging synchronization issues, one approach
to which appears in [2].

The Polkadot model is of particular interest since it has a single relay chain for overall coordination of a
collection of independent parachains. There are specific requirements regarding how a parachain interfaces
with the relay chain. The relay chain rewards nodes for providing security checks on parachains. The
internal structure of parachains is otherwise unconstrained. Indeed, a parachain does not even have to be
a “blockchain” in any specific sense as long as it provides the required interfaces. The relay chain can
coordinate message passing among parachains, enabling the deployment of a set of parachains to construct
a multi-parachain system using their own means of collaboration and/or coordination. This separation of
function in Polkadot’s design is very much in the same spirit as the level-based concepts proposed in this
paper and we speculate that a careful separation of function like the one we propose can be a valuable tool
in the design of multi-parachain systems as the Polkadot ecosystem develops.
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12 Related Work

The connection between blockchain systems and database systems has been explored from a variety of angles,
such as [4, 34]. We have noted earlier than certain blockchain data may be stored in a database. In many
deployments of permissioned enterprise blockchains, virtually the entire data storage may be database-based.
Performance analysis of blockchain systems is best done by using database-style benchmarking as was done
by [12]. A more enterprise-centric framework for blockchain implementation is presented in [21].

As blockchain systems see use for increasingly sophisticated finance operations, the power of smart
contracts is both an opportunity and a threat. Front-running, flash loans, and other techniques represent
either an attempt at fraud or useful market maintenance depending on whose point of view one accepts. It
is reasonable to expect that, in time, mechanisms will be needed to manage trading systems for reasons of
investor protection, regulation, and taxation. Doing this in an effective manner may involve checks, rules, or
review at various levels of the system. The current literature and informal presentations (many in blogs or on
Medium) highlight the problems in this space. Comprehensive solutions that go beyond ad-hoc modifications
of specific systems arguably depends on a more structured database-style view of blockchain systems.

13 Conclusions

Blockchain system design is only in its beginning. Bitcoin and Ethereum are not the final word; indeed
Ethereum is in the midst of a major design transition. New architectures such as that of Polkadot and
Algorand are more evidence that we are in a time of major change and revisitation of system design.

This framework can be used as a structured way to describe existing blockchain systems. As such, it can
be seen as a pedagogical tool. However, a more valuable use of this framework is to facilitate the definition
of blockchain systems that are a hybrid collection of “best of breed” solutions to various components of
blockchain systems and also to facilitate focused research on singular aspects of blockchain systems that can
then be plugged in to existing code bases.

An important near-term application of a structured approach to blockchain systems is the design of a
central-bank digital currency (CBDC) in a manner consistent with the policy objectives of various nations and
their central banks. See [14] for one such example. Such systems need not only to address the correctness and
governance issues covered here, but also the need for performance sufficiently high for global-scale commerce.
As noted in Section 11, our framework may help in the exploitation of parallel and special-purpose hardware
to achieve their performance goals.
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