
Benchmarking the Plonk, TurboPlonk, and UltraPlonk

Proving Systems

Lehigh University

Tal Derei, Caleb Geren, Michael Kaufman, Jon Klein, Rishad Islam Shantho

February 2023

1 Abstract

We evaluate the performance and scalability of the Plonk, TurboPlonk and UltraPlonk

zero-knowledge proof systems using custom gates based on pedersen hashes. This expands

on our prior performance benchmarks of Plonk [1]. All measurements are obtained using

Aztec’s Barretenberg cryptographic library and backend [2] using CPUs.

2 Background

TurboPlonk generalizes the constraint system by introducing custom gates that can

represent complicated statements with fewer gates in a circuit [3]. For instance,

cryptographic primitives like a fixed-base elliptic curve scalar-multiplication, elliptic curve

point arithmetic, and 8-bit logical XORs can be expressed and evaluated with a single

custom gate. UltraPlonk extends this construction with precomputed lookup tables, which

represent efficient key-value mappings [4]. This enables a prover to prove that a witness is

in a table instead of proving the computation itself.

SNARK-friendly hashing algorithms like Pedersen are crucial because they are used

in polynomial commitment schemes and provide collision resistance. Additionally, hashes

dominate 99% of the computation for merkle-tree calculations. For example, adding a single

UTXO note to the note and nullifier merkle trees on Aztec costs 60 hashes in total. For

context, each SHA-256 hash in PLONK requires ~27,000 gates, consuming 1.6m gates [5].

1

https://github.com/TalDerei/Masters-Research/blob/main/Benchmarking%20PlonK%20Proving%20System.pdf
https://github.com/AztecProtocol/barretenberg
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2020/315.pdf
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c


3 Cloud Computing Environment

We measure the relative speed up in performance across the following bare-metal machine

instantiated on Oracle Cloud: 32-core Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz

Base Frequency, 1024 GB DDR4 DRAM, 128 GB SSD.

4 Experimental Results

The raw benchmarks can be found here [6].

We measure performance using the Oracle Cloud Infrastructure (OCI) service and real-time

process monitoring tools. We enabled multithreading using the OpenMP API, BMI2

x86-64 assembly instructions, and Clang compiler optimizations. The maximum constraint

size for the circuits is . Our results extend Aztec’s benchmarks [7] with larger circuit sizes226

and a greater number of hashes.

We are benchmarking the workload for the prover, which is divided into multiple tasks:

1. Construct the arithmetic circuit

2. Calculate witness polynomials

3. Compute the proving key (including q_l, q_r, etc. and sigma polynomials)

4. Compute the verifier key

5. Generate proofs

6. Verify proofs

4.1 Addition and Multiplication Gates

The following charts highlight the performance of Plonk, TurboPlonk, and UltraPlonk

using addition and multiplication gates. TurboPlonk and UltraPlonk exhibit worse

performance than Plonk with only multiplication and addition gates since they are

2

https://drive.google.com/file/d/1uXLUabgh18XHdz0FWvaZo7jMRkqfa1qz/view?usp=share_link
https://medium.com/aztec-protocol/plonk-benchmarks-ii-5x-faster-than-groth16-on-pedersen-hashes-ea5285353db0


structured to optimize performance in the presence of custom gates. For constraints,226

generating a TurboPlonk proof (~138s) is 37% slower and UltraPlonk (~165s) is 63% slower

compared to generating a Plonk proof (101s). UltraPlonk is 19% slower than TurboPlonk in

the same setting.

Figures 1 - 7: Prover workloads for multiplication and addition gates

3



4



TurboPlonk and UltraPlonk also have larger memory utilization footprints than Plonk. For

constraints, generating a TurboPlonk proof consumed 29.5% more memory (330 GB)226

and UltraPlonk consumed ~99% more memory (506 GB) with respect to generating a

Plonk proof (255 GB).

In the chart below, the multi-scalar multiplication for constraints takes ~6.7226

seconds with assembly instructions and compiler optimizations enabled, consuming 45.5

GB of memory. The prover memory utilizations of 255 GB, 330 GB, and 506 GB are

5



significantly higher than the multi-scalar multiplication memory of 45.5 GB. Plonk

computes a collection of polynomials and stores each in three forms:

1. Coefficient form: n * p

2. Lagrange form: n * p

3. Coset-FFT form: 4n * p

This yields a total memory usage of 6n * p. It’s possible to run the plonk prover by storing

just the coefficient form, which would reduce the memory utilization by a factor of 6. This

aligns with the memory utilization for computing the multi-scalar multiplication. This

comes at an additional runtime computational cost from not pre-computing and storing the

polynomials in all three forms.

Figure 8: Multi-scalar multiplication (MSM) memory utilization

4.2 Custom Gates and Lookup Tables

The following charts highlight the performance of Plonk, TurboPlonk, and UltraPlonk

using custom hash gates and lookup tables. This will improve the performance and memory

usage for the TurboPlonk and UltraPlonk proving systems.

6



4.2.1 Comparison of Pedersen Hashes

We compare the execution time and memory usage for 125 - 8k pedersen hashes. Past 8k

hashes, the performance of Plonk dramatically degrades. Without assembly instructions and

compiler optimizations enabled, these workloads wouldn’t be practical and the proof

generation is ~4x slower. The results highlight that execution time and memory utilization

grow exponentially with respect to the number of constraints in the program.

Figures 9 - 15: Prover workloads for custom gates based on pedersen hashes

7



8



The memory consumption of Plonk and TurboPlonk is greater compared to UltraPlonk,

which is contrary to our initial expectations. This is due to the fact that we are evaluating

the proof systems based on the same task size, i.e. 8k hashes, rather than the same problem

size, i.e. constraints. Section 4.2.2 describes this in greater detail for 128k hashes.225

4.2.2 Comparison of Pedersen Hashes

This extends section 4.2.1, comparing TurboPlonk and UltraPlonk for 4k - 128k pedersen

hashes.

9



10



11



Figures 16 - 22: Prover workloads for custom gates based on pedersen hashes

Prover times for UltraPlonk were ~3x faster than TurboPlonk, and the memory utilization

for UltraPlonk was ~2.5x lower than TurboPlonk. This can be explained by the fact that

generating a proof for 128k hashes requires radically different circuit sizes between

TurboPlonk and UltraPlonk.

→ UltraPlonk: 13,191,211 constraints / 103 gates per hash = 128k hashes

→ TurboPlonk: 44,184,152 constraints / 345 gates per hash = 128k hashes

TurboPlonk has ~2.5x increased memory utilization than UltraPlonk when evaluating 128k

hashes because it exhibits a ~3.3x increase in circuit size. TurboPlonk has more gates per

hash than UltraPlonk, since UltraPlonk employs lookup tables that reduce the circuit’s

constraint size. 128k hashes in TurboPlonk will therefore be more expensive than 128k

hashes in UltraPlonk in terms of the number of gates.

In general, custom gates increase the degree of the identity to be proven, which

increases the computational work for the prover. This is in tandem with the reduction in

12



circuit size. For example, the degree of the identity may double while the circuit size may be

cut by half [8].

In section 4.2.3, the memory utilization for UltraPlonk will be higher than

TurboPlonk because we are evaluating the proof systems based on the same problem size,

i.e. constraints, rather than on the same task size, i.e. 8k or 128k hashes, as in sections225

4.2.1 and 4.2.2 respectively.

4.2.3 Comparison of Circuit Size

In this section, we compare the throughput of these proving systems based on the circuit

size rather than number of hashes. The following charts highlight that for constraints,225

proof generation took 50s (Plonk), 64s (TurboPlonk) and 84s (UltraPlonk). The memory

utilization was 129 GB (Plonk), 171 GB (TurboPlonk), and 256 GB (UltraPlonk). The

verification time was constant at approximately 2 - 5 ms.

Figures 23 -24: Proof generation and memory utilization for workloads based on circuit size

13

https://medium.com/aztec-protocol/proof-compression-a318f478d575


In this setting, UltraPlonk has the highest memory profile because it has more

selector polynomials than TurboPlonk, and each selector polynomial is stored in 3 forms.

The increase in memory utilization is not due to the precomputed lookup table because the

table sizes don’t exceed constraints in the current configuration.216

Exceptionally large lookup tables, used for performing efficient range proofs, will

have a negative effect on the prover computation. UltraPlonk adds extra prover

commitments, and a larger table size can add extra prover work. This will also increase

memory utilization as a larger table needs to be stored in system memory [9]. In terms of the

proof sizes, TurboPlonk requires 11 N scalar multiplications and has a proof size of 11 G1

curve elements, while UltraPlonk requires 13 N scalar multiplications and has a proof size of

13 G1 curve elements.

4.2.3 Comparison of Circuit Size vs. Pedersen Hashes

The following compares the circuit size as a function of the number of constraints it can

process. In our configuration, Plonk requires 5113 gates per hash, TurboPlonk requires 345

gates per hash, and UltraPlonk: 103 gates per hash. For circuits with constraints, Plonk225

processed 6,562 hashes, TurboPlonk processed 97,259 hashes, and UltraPlonk processed

14

https://www.youtube.com/watch?v=Vdlc1CmRYRY&ab_channel=ZeroKnowledge


325,771 hashes. TurbPlonk and UltraPlonk were able to prove 14.8x and 49.6x more hashes

than Plonk respectively for the same circuit size. UltraPlonk was able to process ~3.4x hashes

than Turboplonk.

Figure 25: Comparing number of hashes and circuit size

5 Future Research

We obtained our using one machine running on a single 32-core CPU. The next steps are

executing these prover workloads on a single Nvidia server GPU using Cuda, and then

multiple GPUs.

6 Acknowledgements

This work was supported in part by Oracle Cloud and related resources provided by the

Oracle for Research program. The benchmarking data shown here was run on the Oracle

Cloud. Other support for this work includes a gift from Steel Perlot and Google, and a

Lehigh CORE grant. We thank Suyash Bagad from the Aztec network for his insights into

the TurboPlonk and UltraPlonk proving systems.

15



7 References

[1] Benchmarking Plonk Proving System:
https://github.com/TalDerei/Masters-Research/blob/main/Benchmarking%20P
lonK%20Proving%20System.pdf

[2] Barretenberg:
https://github.com/AztecProtocol/barretenberg

[3] The Turbo-Plonk Program Syntax for Specifying SNARK Programs:
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_
plonk.pdf

[4] Plookup: A Simplified Polynomial Protocol for Lookup Tables:
https://eprint.iacr.org/2020/315.pdf

[5] Why Hashes Dominate in SNARKs
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555
f074c

[6] Raw Benchmarks:
https://drive.google.com/file/d/1uXLUabgh18XHdz0FWvaZo7jMRkqfa1qz/vi
ew?usp=share_link

[7] PLONK Benchmarks II — ~5x faster than Groth16 on Pedersen Hashes:

https://medium.com/aztec-protocol/plonk-benchmarks-ii-5x-faster-than-grot

h16-on-pedersen-hashes-ea5285353db0

[8] Proof Compression:

https://medium.com/aztec-protocol/proof-compression-a318f478d575

[9] zkSummit: Plookup, Speeding up the PLONK Prover - Zac Williamson &

Ariel Gabizon:

https://www.youtube.com/watch?v=Vdlc1CmRYRY&ab_channel=ZeroKnowl

edge

16

https://github.com/TalDerei/Masters-Research/blob/main/Benchmarking%20PlonK%20Proving%20System.pdf
https://github.com/TalDerei/Masters-Research/blob/main/Benchmarking%20PlonK%20Proving%20System.pdf
https://github.com/AztecProtocol/barretenberg
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2020/315.pdf
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://medium.com/aztec-protocol/why-hashes-dominate-in-snarks-b20a555f074c
https://drive.google.com/file/d/1uXLUabgh18XHdz0FWvaZo7jMRkqfa1qz/view?usp=share_link
https://drive.google.com/file/d/1uXLUabgh18XHdz0FWvaZo7jMRkqfa1qz/view?usp=share_link
https://medium.com/aztec-protocol/plonk-benchmarks-ii-5x-faster-than-groth16-on-pedersen-hashes-ea5285353db0
https://medium.com/aztec-protocol/plonk-benchmarks-ii-5x-faster-than-groth16-on-pedersen-hashes-ea5285353db0
https://medium.com/aztec-protocol/proof-compression-a318f478d575
https://www.youtube.com/watch?v=Vdlc1CmRYRY&ab_channel=ZeroKnowledge
https://www.youtube.com/watch?v=Vdlc1CmRYRY&ab_channel=ZeroKnowledge

