
The Standardization of Blockchain Benchmarking

by

Je↵erson Van Buskirk

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

May 2023

© Copyright by Je↵erson Van Buskirk 2023

All Rights Reserved

ii

Thesis Signature Sheet

Thesis is accepted and approved in partial fulfillment of the requirements for the Master
of in .

Thesis Title:

Name: ________________________

LIN: ____________________

Date Approved

Director/Advisor

Co-Advisor

Department Chair/Second Reader

Committee Member

������������������
�������	������������	��������	��	

��
�����	

�����'�"��%��+�'�#"�#�� #������"��"��!�%��"�

�����%&#"���"�(&��%�

����"�� �#!$('�%�����"���

��"%*����#%'�

	�������

%��"������)�&#"

Acknowledgements

This thesis covers research I performed independently as well as the preliminary

development of a blockchain benchmarking suite. The benchmarking suite was a

project developed by a larger group of students from National University of Singa-

pore, University of San Diego, and Lehigh University. The students included Ren

Kunpeng (NUS), Miguel Monares (UCSD), Zheng Yong (NUS), and Shizheng Hou

(NUS), and myself. While I was very involved in the design of the benchmark driver,

Section 3.3, as well as systems to create inputs for the driver, the NUS students

were the primary developers for the benchmark driver. I would like to thank the

professors who made this project possible. Hank Korth and Roberto Palmeri facili-

tated the project from Lehigh as well as Beng Chin Ooi and Dumitrel Loghin from

National University of Singapore. I would like to specifically thank Hank Korth,

who acted as my mentor and advisor during my graduate degree.

iv

Contents

Acknowledgements iv

List of Tables vii

List of Figures vii

Abstract 1

1 Introduction 2

2 Initial Research 4

2.1 Defining a Proper benchmark . 4

2.2 Blockchain vs. Database Benchmarking 6

2.3 Current Blockchain Benchmarks . 10

2.4 Problem Statement . 12

3 BBSF Framework 15

3.1 Standardized Workload Framework 15

3.2 Standardized Metrics Framework . 18

3.3 Standardized Benchmark Driver . 19

3.4 Standardized Reporting Framework 23

4 Blockbench v3 25

4.1 Workload Design . 25

4.2 Blockbench v3 Workloads . 27

4.3 Blockbench v3 Macro Metrics . 30

5 Preliminary Results 33

v

6 Summary of Contribution 37

7 Future Work 38

7.1 Short Term . 38

7.2 Long Term . 40

Bibliography 44

Vita 48

vi

List of Tables

2.1 Blockchain Organizations’ Claims [Sources in Bibliography] 10

vii

List of Figures

3.1 Driver Design . 19

5.1 Token Exchange Workload Experiment Results 34

viii

Abstract

A benchmark is a measurement of a systems performance against another systems

performance. A proper workload is relevant, reproducible, fair, verifiable, and usable

[24]. A proper workload is also standardized between the systems being measured,

as to produce comparable results. The Transaction Processing Performance Council

(TPC) provides a range of database benchmarks including standardized benchmarks

for transaction processing, decision support, and virtualization. These benchmarks

provide external parties with results that are comparable between systems and lead

to informed decisions when choosing the best system for a given task. This standard-

ization of benchmarks across the blockchain industry is necessary for the adoption

of blockchain technology. Currently, blockchain organizations benchmark in-house

using their own workloads, runtime environments, and definition of metrics. As

such, the results of a given blockchain organization are not comparable to the re-

sults of another blockchain organization. In this thesis we explore the problems

within blockchain benchmarking, our proposed framework for developing standard-

ized blockchain benchmarks, and our implementation of this framework in a web3

focused benchmark for layer-1 blockchains.

1

1 Introduction

Since the introduction of blockchain with the proposal of Bitcoin in 2008 [19],

blockchain technology has experienced rapid growth in popularity and development,

with numerous blockchain applications emerging in domains such as financial ser-

vices, supply-chain management, IoT, and healthcare [18]. With the increasing

popularity and demand for decentralized systems, the number of blockchains has

skyrocketed, most with their own unique features, protocols, and design choices.

However, the abundance of blockchain choices poses a challenge for developers

and businesses seeking to implement blockchain solutions. It is di�cult to determine

which blockchain is most appropriate for a particular use case, as each blockchain

cites its own performance characteristics, distinctive features, and unique strengths.

Their published benchmark data give at least the appearance of being biased to-

wards the blockchain being promoted and is usually not subject to independent

verification. In addition to being unverified, the benchmarks are highly incompat-

ible. Most blockchains report their throughput in transactions per second (TPS),

but fail to define transaction in a standardized manner. Without a consistent def-

inition of transaction, the numbers produced cannot be compared and are thus

useless for actual decision making. The in-house benchmarking currently presented

by blockchain organizations is only useful for marketing purposes.

This thesis presents a standardized framework for developing blockchain bench-

marks (BBSF). This framework addresses the complications of blockchain bench-

marking and requires explicit definitions of all aspects of the benchmark. This

framework is accompanied with a driver to execute the benchmarks in a standard-

ized manner, ensuring that all changes in performance measured are a result of the

blockchain being measured. The framework also includes a standardized reporting

2

format for easy comparison of results and replication of the benchmark for indepen-

dent verification.

After presenting the framework, we present our implementation of this frame-

work: Blockbench v3, a blockchain benchmark for public layer 1 blockchains com-

posed of workloads relating to common web3 applications. This benchmark, and

the results produced, show the viability of the BBSF and the possible future of a

standardized blockchain benchmark.

This thesis assumes the reader has some background in the basic concepts un-

derlying blockchain technology including the use of hashes and digital signatures

to achieve immutability and irrefutability. This thesis also assumes at least a high-

level understanding of the internal operation of Bitcoin’s proof-of-work consensus

protocol, and the basic concepts of proof-of-stake as used in Ethereum and other

chains. An introduction to these concepts at a high level appears in a variety of

sources including [16, 22].

The type of code that can run on a blockchain is dependent on the features that

the blockchain has for code execution. Bitcoin has a stack-based scripting language

o↵ering no loops and no recursion and, thus, is not Turing complete. Ethereum

and most other major blockchains o↵er a Turing-complete framework for writing

code that runs on-chain. Such code is referred to in the blockchain community as a

smart contract, but those more familiar with database systems will find this concept

similar to a stored procedure. The power of a blockchain’s smart-contract language

and the strength of its built-in features play a significant role in what workloads the

blockchain can run and how e↵ective it will be in running them.

3

2 Initial Research

2.1 Defining a Proper benchmark

Before looking at blockchains, it is first important to understand the foundation of

a good benchmark. A proper benchmark provides quantifiable metrics that can be

used to compare systems against each other, identify the strengths and weaknesses

of a system, and ensure that a system is applicable to a given project. Kistowski,

et al. [24] define the desirable characteristics of a proper benchmark:

• “Relevance: How closely the benchmark behavior correlates to behaviors that

are of interest to consumers of the results.

• Reproducibility: The ability to produce consistently similar results when the

benchmark is run with the same test configuration.

• Fairness: Allowing di↵erent test configurations to compete on their merits

without artificial limitations.

• Verifiability: Providing confidence that a benchmark result is accurate.

• Usability: Avoiding roadblocks for users to run the benchmark in their test

environments.” [24]

These characteristics sound obvious, but are easily forgettable in a decentralized

environment. Two independent organizations could independently create their own

proper benchmarks, but their results may not be comparable. Benchmarking two

cars can be done in many di↵erent ways. If two car companies want to compare

the acceleration of their cars they must measure the same metrics, in the same

environment, under the same workload for the results to be useful. If they develop

4

their benchmarks independently, it is unlikely that all of these requirement will be

met.

If Company A measures the 0-45mph acceleration time of their car and Company

B measures the 0-60mph acceleration time of their car, they are both measuring

acceleration, but the two numbers measured are not comparable. Despite both

measuring acceleration in the same units, the Company A benchmark cannot be

extrapolated and estimated for comparison against Company B without making

assumptions about the time to shift gears, maximum revolutions per minute, and

top speed.

Standard metrics are important, but only under a standardized workload. The

workload is the work that a system performs while the metrics are measured. If

Company A measures their 0-60mph acceleration time with wind at their back

or down a hill then their results will be skewed in their favor. This will allow

for better marketing, and technically their measurement will be true, but clearly

removes the ability compare their results with companies measuring on flat ground

without wind. Explicitly stating the environment, processes, and requirements of the

workload ensure that both systems are being benchmarked equivalently, producing

comparable results.

Tesla advertises the Model S Plaid acceleration from 0-60mph less than 1.99

seconds [13]. They have a tiny asterisk that explains this is excluding the first foot

of acceleration, e↵ectively making the measurement a 6-60mph acceleration. This

asterisk only exists on their fastest version of their models, misleading all of their

customers and advertising benchmarks that are not measured under standardized

workloads. In addition to cutting the first foot of acceleration, they also coat the

track they are testing on with a resin to allow the car to accelerate faster [9]. This is a

clear advantage for Tesla and generates times that are real, but not measured under

5

relevant, standardized workloads. Cars drive on asphalt, and customers looking to

purchase a car will be misled for assuming relevant testing conditions.

The same challenges present in car benchmarking are present within the

blockchain industry. Di↵erences in metrics, workloads, and environments present a

plethora of challenges in creating proper performance benchmarks. The car industry

has found the agreed upon standard of acceleration to be 0-60mph, and for the most

part companies adhere to this standard. Blockchain organizations need this type of

standardization for the industry to properly develop. Right now, every company is

Tesla, creating their own benchmarks with adhesive tracks, as there is no standard

for well behaved companies to use.

2.2 Blockchain vs. Database Benchmarking

The database community has a robust and mature set of methods for benchmarking.

The TPC (Transaction Processing Performance Council1) database benchmark is a

widely used industry standard for measuring the performance and scalability of

database systems [11]. TPC has a variety of benchmarks that are used by major

companies like IBM, Oracle, Microsoft, Intel, Dell, Cisco, Nvidia, and AMD. These

benchmarks cover a wide range of database use cases, the most relevant being TPC-

C and TPC-E, two workloads that simulate OLTP (Online Transaction Processing)

businesses with multiple types of transactions aggregated into one transaction mix.

The TPC-C and TPC-E benchmarks measure throughput, transactions completed

in a set amount of time, with a constraint on individual transaction latency. As

most databases are specialized for specific usage, developers can choose the TPC

benchmarks that most closely match their intended use. This leads to simpler, more

relevant benchmarks across varied database use cases. In the blockchain setting, the

variance in use cases is much larger.

1tpc.org

6

tpc.org

While it may seem trivial to port TPC benchmarks to the blockchain envi-

ronment and use them as the standard, developing a standardized benchmark for

blockchains is significantly more challenging than it is for databases. First, the

transactions being executed are not the same in both settings. In a database set-

ting, the majority of transactions are data processing in the form of read, write,

update, and delete. Under the TPC-C Benchmark, these database transactions are

required to support the ACID (Atomicity, Consistency, Isolation, and Durability)

properties [11]. Atomicity refers to either executing the entire transaction or no

part of it. If the system crashes while a transaction is being executed, the whole

transaction should be voided. Consistency refers to the idea that any update done

to a consistent database state (all restrictions and conditions of the database are

met) should produce a new consistent database state. Isolation requires transac-

tions to properly support “time of check, time of use” requirements that prevent

a transaction’s execution from being influenced by transactions executing concur-

rently. Lastly, durability ensures that committed transactions are final and can be

considered complete. These ACID requirements ensure that all transactions are

similar and easily testable. The TPC-C transaction mix contains “business trans-

actions” composed of one or more of these actions, creating transactions that are

predictable and similar in composure. For these actions to execute, the code simply

executes and commits.

In a blockchain setting, a transaction is much more ambiguous. Transactions

may be simple debit/credit functions between wallets, but can also be much more

complex. Transactions include minting new tokens or publishing contracts to the

blockchain and creating new digital entities and assets. Transactions may execute

smart-contract code that may, in turn, call other smart contracts, which is far more

complex than a simple database function. This leads to measurements that claim

7

to measure the same metric, but produce questionable results.

In addition to these di↵erences, block finality adds another challenge. When a

database transaction commits, it is done executing and is durable. On a blockchain,

blocks that are newly added to the chain may not be considered final. Accidental

forks of the blockchain happen often, sometimes requiring a several-block race for

a fork to win. The blocks on the losing side of the fork are nullified (“orphaned”),

making it so their transactions never happened. These transactions will eventually

be attempted at a later point within the winning fork, which ensures that the chain

operates properly but creates a benchmarking issue as it is not always obvious when

a transaction is complete.

In contrast to the database concept of transaction commit, in which a specific

atomic action makes the transaction durable, block finality, in many blockchains,

can be considered as a probability distribution of how likely a transaction is final,

and di↵erent users may set di↵erent acceptable thresholds for a transaction being

considered complete.2 A 90% probability that a transaction is completed will mark

transactions complete sooner than a 98% probability, as more time will need to pass

to solidify the transaction’s completion. Two benchmarks measuring transaction

latency with the same workloads will produce vastly di↵erent results if the finality

thresholds are di↵erent.

Some blockchains, for example, Algorand [6], claim to support instant finality,

a property resulting from the absence of forks under certain assumptions about the

degree of dishonest node behavior. Instant finality makes benchmarking much easier,

as it is easy to identify when transactions are complete, however not all blockchains

support this property.

2
The Bitcoin community accepts a notion of finality based on a block being followed by 6 more

blocks, a process that takes approximately an hour. The exact probability of finality that this

represents is dependent on many features of the block mining ecosystem and is thus di�cult to

compute with any degree of precision.

8

The di↵erences in transaction execution are only a portion of the benchmark

that require standardization. Representing a running blockchain is very di�cult.

Database environments can represent the expected hardware of a fully deployed

database. In contrast, a fully deployed chain cannot be easily represented. Bitcoin

is currently running with 50,000 validator nodes, which is not a model that can

be created in a testing environment. A testing environment representing a chain

cannot simulate the noise of other transactions running concurrently on the chain.

Blockbench, a blockchain benchmark from 2017, benchmarks their workloads with

blockchains ranging from 4 to 32 nodes [8].

A metric missing from most database benchmarking is fault tolerance. If nodes

fail to act and consensus is not reached, actions are taken to fix the situation and

get the system to where it should be. While this does happen, and recovery times

are important, failures are less common. All nodes in a private database system are

properly acting nodes and failure occurs only in the case of hardware malfunctions

or software bugs. In a blockchain scenario, there is an incentive for nodes to attack

the chain, and in a public scenario, there can be no expectation that all nodes

are acting properly. Attacks are composed of nefarious nodes choosing to act in

unpredictable ways that aim to prevent proper consensus and stop the chain from

operating. Di↵erent consensus algorithms have di↵erent tolerances for attacks, a

threshold at which nothing happens (denial-of-service), and a threshold at which

the chain is taken over. It is important to benchmark both this threshold for total

chain stoppage and the slowdown achieved by a smaller attack. Measuring fault

tolerance provides a metric for the resilience of a chain under attack, a metric

typically missing from database benchmarking since external security is not within

the scope of a database system.

9

Blockchain Throughput (TPS) Blocktime (s) Transaction Finality (s)

Ethereum (Pre-Merge) 301 121 9008
Ethereum (Post-Merge) 100,0002 123 N/A

Solana 400,0004 4005 54
BNB Chain (Binance) 50009 16 16

Celo 140,0007 17 010
Algorand 46,00012 2.512 011
Stellar 2,00013 513 014

Table 2.1: Blockchain Organizations’ Claims [Sources in Bibliography]

2.3 Current Blockchain Benchmarks

Blockchain Organizations’ Claims

The blockchain industry is not void of benchmarking results. The results are primar-

ily used as marketing resources to claim superiority over other blockchains, but the

results produced are not comparable. The lack of standardization between bench-

marks as well as no reporting requirements produces numbers without proper data

to support them. Table 2.1 compiles some of the current blockchain measurements

and explains the problems associated with them.

The claims shown in the table exemplify the problems with in-house benchmark-

ing. The metrics presented for Ethereum are measurements produced by the live

Ethereum chain under the workload of all Ethereum transactions, while “Solana’s

testnet has demonstrated 400,000 TPS on a single machine without any networking”

[21]. Ethereum’s results show the performance of their deployed, scaled, and active

network; while Solana’s results are highly specialized, engineered, results. While

Ethereum’s results appear to be less advertisement focused, their results are not

any more useful than Solana’s. Other blockchains looking to compare their per-

formance to Ethereum cannot be sure of the amount of nodes in the network, the

hardware the nodes are running, the actual workload being measured, or the defi-

10

nition of transaction being reported. For all blockchains in Table 2.1, the numbers

are non-comparable and irreproducible, thus providing no use for developers.

Current Benchmarking Solutions

There are few available blockchain benchmarking solutions, however, they are lim-

ited in scope, functionality, or design. Others were designed specifically for older

versions of blockchains and not constructed so as to be easily deployed on new

systems.

Our proposal rests on the foundation of the prior Blockbench (and related) work

discussed in [3, 8, 15]. Blockbench is a blockchain benchmarking framework re-

leased in 2017 that focuses on the evaluation of micro/macro metrics for private

blockchains. Blockbench evaluates chains on workloads such as Smallbank and key-

value storage. Since its release, the complexity and breadth of blockchain applica-

tions and workloads have dramatically increased, creating a need for a benchmarking

solution that is relevant to modern blockchain use cases. Hyperledger Caliper [2]

is a blockchain benchmarking framework that supports performance evaluations of

transaction/read throughput, latency, and resource consumption using synthetic

workloads. Another benchmarking solution is Gromit [20], which uses fixed asset

transfer as its workload in its evaluation of blockchains’ performance and scalabil-

ity. BCTMark [23], a framework that benchmarks blockchains with an emphasis

on system metrics, conducts its evaluations using workloads such as varied sorting

algorithms. The Diablo Benchmark Suite [10] benchmarks blockchains with smart

contracts inspired by Web2 workloads, such as Dota (gaming), Uber (mobility ser-

vice), and YouTube (video sharing). While these workloads attempt to capture the

nature of applications in the field, these Web2 workloads are not characteristic of

applications run on a blockchain.

11

The prevailing issue among current blockchain benchmarking solutions is the

lack of relevant workloads that are representative of realistic blockchain applications.

This leads to evaluations that fail to characterize completely modern blockchains’

true workloads and use cases. Section 4.2 further explores relevant workloads for

blockchain benchmarking.

2.4 Problem Statement

Given the sparse ecosystem and wide architectural variance of blockchains, there is

a need for methods to evaluate and compare di↵erent blockchains based on objective

and standardized methods, in order to empower well-informed choices of blockchains

for applications.

In the state of blockchains today, benchmarking of blockchain performance

is mostly performed in-house. In-house benchmarking is great for advertising a

blockchain’s capabilities but lacks the verifiability and comparability of a stan-

dardized benchmark. Many current blockchain performance evaluations lack the

transparency of methodology, workload, and testing environment, often leading to

irreproducible claims.

Blockchain foundations, supporters, and others often cite figures presuming their

proposed transactional models and workloads as the “correct” ones. This is far from

the enterprise-focused benchmarking performed in the database industry by TPC,

where workloads match what real users do and the benchmarks prescribe testing

details from that workload perspective.

One di�culty in comparing the declared assessment of benchmarked blockchains

is the lack of standardization in the metrics being measured, such as transactions per

second (TPS). For the results of a benchmark to be useful for a fair comparison, they

must be measuring the same metrics under the same workloads and environment.

12

Without a standardized system, the evaluation of blockchain performance is invalid

and, therefore, largely uninformative to developers.

Standardized metrics are important, but only under a standardized workload.

The workload is the set of processes that a system is performing while the metrics

are measured. In the state of blockchain benchmarking today, workloads are heavily

unstructured between evaluations, and there is a tremendous variety of possible

workloads that are executed on a blockchain. For example, Solana claims to perform

tens of thousands of transactions per second, an astronomical di↵erence compared

to Ethereum’s 10s of transactions per second, but the definition of “transaction” is

ambiguous. In general, blockchain transactions can be simple, such as debit/credit

transactions for simple payments, or complex and demanding, such as NFT minting

or smart contract execution. Classifying all of these actions as “transactions” allows

companies to make claims that may technically be true, but not fair and relevant

when comparing blockchains. Explicitly stating the environment, processes, and

requirements of the workload ensures that systems are being benchmarked fairly.

A comparison of performance claims by various chains published in early 2021 [17]

illustrates the lack of clarity in terms of definitions and workload.

In addition to standardized metrics and workloads, a proper benchmark requires

standardized environments. Blockchain environments may di↵er in hardware, num-

ber of nodes, and percentage of nefarious nodes; lack of standardized environments

will lead to incomparable results.

A proper benchmark must explicitly specify how metrics are defined and mea-

sured, workload parameters for adjustable elements, and require the benchmark to

list full details of the hardware environment (nodes, network, etc.). Such a bench-

mark must contain a variety of relevant workloads that explore the strengths and

weaknesses of blockchains robustly so that each chain is tested not only on its

13

strong points but also areas of weakness. In the following sections, we propose a

framework for developing proper benchmarks (Blockchain Benchmark Standardized

Framework), that contains requirements for workload definition, a structure for use-

ful metrics with explicit definitions, a driver for executing these workloads, and a

reporting format for presenting results.

14

3 BBSF Framework

The Blockchain Benchmark Standardized Framework (BBSF) provides standardiza-

tion across all aspects of blockchain benchmarking [14]. It is designed to facilitate

the design and implementation of standardized, relevant, and transparent blockchain

benchmarks. The BBSF is composed of:

1. A standardized workload framework that contains explicit definitions of all
aspects of a workload ensuring proper implementation across all blockchains.

2. Standardized, workload-specific, micro metrics aggregated into a set of macro
metrics that are easily comparable between blockchains.

3. A standardized driver that interfaces with a fully deployed blockchain, gen-
erates the workloads, calls the transactions, and measures metrics in a stan-
dardized manner.

4. A standardized reporting format that ensures that all metrics measured are
transparently communicated in an easily comparable and reproducible format.

3.1 Standardized Workload Framework

Each workload is composed of standard components to ensure that all implementa-

tions of the workloads provide comparable results. The workload framework starts

with an overview of each of the major sections. Firstly, a summary of the type of

activity represented by the workload is given as well as current applications that

generate this type of activity. Next, an overview of the transactions that make up

this activity is given. Workloads may include multiple transaction types as most ap-

plications have multiple types of actions. Having multiple transaction types means

that the transaction throughput (TPS) measured in the workloads represents an

“average transaction” that contains the average amount of work among the trans-

action types and their frequencies. Following the transaction overview are sections

outlining the smart-contract functions, wallets required, and external structures

15

used in the workload that may be “o↵-chain”.

After the overview of the workload, the next section outlines workload sizing.

For each workload, each worker client (more details in Section 3.3) is given a number

of transactions determined by the transaction mix. Adding more clients increases

the total number of transactions and thus the total workload size, however any

number of clients that properly stress the system su�ces. The number of nodes

used is reported in the standardized results reporting framework. This workload

section includes a statement of the transaction mix and the arrival distribution of

transactions. The transaction mix contains the list of transaction types and their

contributing portion to the overall transaction mix. While some workloads have

only one transaction type, others will have multiple. It is important to ensure that

workloads with multiple transaction types use the same mix across all implemen-

tations. As the transactions are pseudo-randomized, the exact proportion of each

transaction to the total mix may slightly vary. The transaction mix has minima

and maxima for the proportion of each transaction type permitted. Arrival distri-

bution refers to the times at which transactions are given to the workload. Some

workloads will provide all of the transactions at time 0, while other workloads create

new transactions throughout the workload, with workload-dependent distribution

characteristics (BBSF does not mandate any specific distribution such as uniform

or Poisson).

Following the workload section, the setup section outlines the starting conditions

for the workload. The wallet and contract sections outline the starting balances

of wallets and contracts, as well as the initial state of the contract. If certain

information needs to be in the contract before the workload begins, that need is

stated here, including the information required and the contract functions that need

to be called to reach this state. The setup section also contains the starting values for

16

external structures that may be used for assisting the workload. It is important to

note that if these external structures are accessed by a smart contract associated with

the workload the performance of this structure may impact results. To ensure that

this impact is standardized, implementations of these structures must be explicitly

defined.

The contracts section of the workload explicitly defines each contract used in

the workload. Each contract has an overview of the wallets, structures, and other

contracts called within its functions and then outlines each variable, struct, event,

and function. The variables, structs, and events are straightforward definitions of

what each contains as well as a description of the usage and purpose of each. The

functions section lists each function’s parameters, return type, processes, wallets

accessed, events emitted, and external contracts called. It is important to define

each function in as detailed a manner as possible to ensure that the transactions are

implemented by di↵erent blockchains in similar fashions. While functions could be

defined line by line, we chose to take a less controlling approach. Some blockchains

support di↵erent tools within their programming language that possibly can a↵ect

performance. While this does seem like an unfair advantage in what should be a

standardized process, it is important to remember the goal of providing results that

are relevant to real developers. If specific blockchain languages support di↵erent

functionality, this functionality will be used by developers building on top of said

blockchain and will thus see the performance increase as a result.

The results of a blockchain’s performance under a workload are determined

through measurements called metrics. Each workload is structured with a list

of workload-specific micro metrics that directly measure the performance of the

blockchain under the workload, usually relating to throughput, latency, and time.

Each micro metric has sections explaining what units are being measured, what

17

transactions are associated with the metric, and how to measure1 the metric. These

micro metrics serve as intermediate measurements that can be aggregated to deter-

mine the macro metrics of a blockchain, the overall, cross-functional scores. The

macro metrics can describe the performance of the blockchain in 3 scores without

requiring any understanding of the underlying workloads. This allows developers to

make quick decisions without needing to read entire performance reports.

3.2 Standardized Metrics Framework

In addition to standardizing the transactions being called, BBSF has a standardized

framework for the metrics being measured. Each workload has specific micro met-

rics used to compose macro metrics by changing the parameters of the blockchain

being measured. Changing blockchain parameters and plotting the changes in micro

metrics leads to a broader analysis of the performance. For example, running the

same workload using a blockchain with 1, 4, 8, 16, 32, and 64, nodes and plotting

the micro metric throughput against the number of nodes will provide insight into

the scalability of the blockchain. This macro metric can be used to extrapolate

how e�ciently the chain will run at full scale and conveys valuable information that

cannot be measured by one workload. Although individual workload results can be

compared, macro metrics provide a zoomed-out view of these results that is more

easily understood by an external viewer. A developer can look at these macro met-

rics without needing to understand the underlying workloads and still make accurate

comparisons about their blockchains of interest.

18

Server
Workload
Generator

TCP
Server

Result
Aggregator

Client
TCP

Client
Blockchain

Client

Blockchain
Nodes

Node 1

...

RPC

workload_config.json
"worker_number": x,
"worker_threads": y,

"blockchain_info": {...},
"workload_info": {...}

Node 2

Node 3

Node 4

RPC

Figure 3.1: Driver Design

3.3 Standardized Benchmark Driver

We created a driver that executes the workload on the respective blockchain. Simi-

lar to the case for workloads, a proper driver must interface with all blockchains in

a standard manner, so as to not have driver performance impact blockchain perfor-

mance. The main goals for the driver are that it should not a↵ect the performance

of the blockchain, semi-idempotent execution that preserves real-world transaction

ordering constraints so that running the same workload multiple times yields the

same metric scores, and an implementation that makes it easy to benchmark a va-

riety of blockchains. Our driver implementation is a server/client separate from the

measured blockchain that calls transactions from clients without any direct con-

nection to the blockchain itself. By keeping the blockchain a separate system, the

integrity of the benchmark is preserved as the system that is being measured is the

same system that will be deployed.

1
Recall that we noted earlier that measuring these metrics in a blockchain setting may be less

precise than in database benchmarking, since, for example, blockchain transaction finality may be

only probabilistic, while database transaction commit is deterministic.

19

Structure

The driver is structured as a server that connects to multiple worker clients that

act as users connecting to and using the blockchain. The server is responsible for

compiling and deploying the contract, generating the workload from the transaction

list and wallet list, signing each transaction, and sending transactions (invocation

to smart contracts) to the clients. The clients call these transactions as normal

users would and measure the metrics for each individual transaction. This struc-

ture ensures that the limiting factor in the benchmark, and thus the process being

measured, is the execution of the transactions on the blockchain. Without multiple

clients, a fast blockchain could outpace a slow driver and process transactions faster

than a single source could call them. Multiple workers allow the driver to scale

infinitely and eventually call as many transactions as the blockchain can handle.

Functionality

The driver takes inputs of the workload contract, a wallet list, a transaction list,

and a finality parameter. The wallet list is the set of wallets used during the work-

load execution, represented as a file with the address and private key pairs. The

transaction list is the set of transactions used in the workload composed of the type

of transaction, the parameters of the transaction, the time the transaction is to be

called, and the wallet calling the transaction. The finality parameter is determined

by the user running the benchmark, as the process for determining this number is

external to the benchmark. Setting this variable to 1 marks all transactions as final

after they are one block “deep” onto the chain while setting it to n defers marking

the transaction as final until it is n blocks deep. This variable is reported with the

results to ensure the benchmark is reproducible.

The process starts with the server compiling and deploying the contract and

20

signing all of the transactions using the wallet list. The server then sends the

transactions to the clients, and then simultaneously signals the nodes to begin the

workload. Once the clients start calling the transactions, the clients log when each

transaction was called. While the workload is running, the server monitors each

block and measures the throughput. Throughput is measured by taking the current

completed transactions and measuring the current block timestamp and subtracting

the time the first transaction was called. Dividing the completed transactions by the

total time gives the current average throughput. When the workload is complete,

this will represent the average throughput for the whole workload. When the work-

load is complete, the clients send their transaction timestamps to the server. The

server uses these timestamps as well as the appropriate block timestamp to find the

latency for each transaction by subtracting the block timestamp from the sending

timestamp. Adding these di↵erences together and dividing by the total transactions

aggregates the average latency.

Workload Generation

While two of the driver goals were satisfied through a blockchain-neutral driver,

semi-idempotency is achieved through the usage of a transaction-list file rather

than randomized workloads. Every workload contains an arrival distribution and a

transaction mix. These components are useful for understanding the transactions

a workload contains, however, they could be interpreted slightly di↵erently upon

implementation. Varying interpretations could lead to changes in performance. For

example, in the NFT marketplace workload, if the transaction mix is 50% listing

and 50% buying and there are 100 transactions total, there will be 50 lists and 50

purchases that need to be measured. If all of the lists happen before the purchases,

then everything will work fine. However, if the purchases happen before the listing

21

of the NFT occurs, the purchasing transactions will fail as they are trying to pur-

chase NFTs that have not been listed yet. This ordering discrepancy will cause the

performance metrics to be significantly di↵erent, despite the individual transactions

being exactly the same. To address this, we use pseudo-random pre-generated lists

of individual transactions. To generate these transaction lists, an unordered list of

transactions is generated to match the transaction mix related to the given work-

load. This transaction mix is generated from the relevant historical data relating

to the given workload. The ordering of these transactions is then randomized while

maintaining a proper ordering of related transactions. A list for NFT A will always

come before the purchase of NFT A, however, there will be a random number of

randomly chosen transactions between them. This pseudo-random ordering ensures

that transactions occur in the correct order without allowing custom benchmark-

specific code to exploit a set transaction ordering.

Using multiple clients ensures that the blockchain is the limiting factor, but

causes idempotency problems. If the transactions are to be called in a specific order

and there are multiple clients calling transactions at a time, the ordering of the

transactions cannot be guaranteed. Client 1 could call the transaction to purchase

NFT A before client 2 could call the transaction to list NFT A. To accommodate the

concurrent calling structure, the transaction list represents a portion of transactions

that represent a portion of the total workload. When this set of transactions is

sent to each client, it is given a prefix to distinguish it from the transactions in the

other clients. For example, client 1 may receive transactions regarding NFTs 1A,

1B, 1C, and 1D, and client 2 would receive transactions regarding NFTs 2A, 2B,

2C, and 2D. The transactions mix would be the same for each client however each

node would be dealing with its own set of NFTs. As long as each client has ordered

calls, then the overall workload’s integrity is preserved. Client 2 can never call a

22

purchase for an NFT that client 1 has not listed, as client 2 and client 1 deal with

completely di↵erent NFTs.

3.4 Standardized Reporting Framework

Comparability among benchmark runs depends not only on standard workloads,

metrics, and driver, but also on a result-reporting format that simplifies compari-

son among experimental runs by a variety of organizations. While the main goal is

to provide easily understood macro metrics, it is important that all driver inputs,

workload specifications, and environmental specifications are properly reported to

maintain transparency. Reporting every aspect of the benchmark allows indepen-

dent users to verify the results, by running the benchmarks themselves. Although

each benchmark will be reporting di↵erent macro metrics, the reports from all bench-

marks should follow the BBSF reporting framework.

To properly report the results from the benchmark, one must report the results

of their experiment and the parameters used to recreate the experiment. Reporting

the measurement is as simple as reporting the macro metric measured, as well as

the individual micro metrics used to generate the macro metric. The macro metric

is what will be compared and advertised, while the micro metric reporting gives

credibility to the macro metric. Users who wish to verify the results can match

their micro metrics with the reported ones, ensuring that everything being reported

is correct.

In addition to reporting the results, the workload parameters, runtime environ-

ment configuration, and hardware must also be reported. Workload parameters

include the workload being measured, the size of the workload used, and any other

variables within the workload. Runtime environment specifications include param-

eters such as the amount of nodes used and the threshold for finality. These pa-

23

rameters represent the configuration of the blockchain being measured. Finally, the

hardware being used must be reported as better hardware will yield better results.

In conjunction, the workload parameters, runtime environment configuration, and

hardware provide all information required to replicate the experiment and validate

the reported results. This allows for third party verification of results as well as

better comparability between reported results, as users can be sure that the envi-

ronment that tests occur in are the same.

24

4 Blockbench v3

Our implementation of the BBSF, Blockbench v3 [1], is a benchmarking platform

focused on Web3 applications running on layer-1 blockchains. The workloads pro-

posed in Blockbench v3 cover a variety of transaction types seen in the Web3 space,

as well as a range of arrival distributions to provide full insight into a blockchain’s

performance on Web3 applications. The results of this benchmark serve to both

help developers make decisions regarding web3 performance on layer-1 blockchains

and as a proof of concept for the BBSF as a whole.

4.1 Workload Design

Designing workloads for Blockbench v3 focused on choosing relevant applications,

a variety transaction types and arrival distributions, and a range of measurable

metrics. Section 2.3 discusses the most pressing issue with current benchmarking

solutions: the relevancy of their workloads. The Diablo Benchmark Suite [10] is one

of the most advanced blockchain benchmarking solutions, but their workloads fail

to represent actual blockchain use cases. The Diablo Benchmark Suite workloads

include a live gaming application representing the activity of a game of Dota 2, and

a video sharing app representing YouTube. A live game requires large transfer of

data in a live environment. Given the nature of mempools, gas fees, and mining,

the information sent would not be received in a live, in-order fashion. In addition

to the issues with their live game, the idea of storing video data on a blockchain is

unreasonable. Although there are no o�cial numbers for the total amount of data

stored on YouTube, an independent user estimated a total of 2500 PB 1. While

there are decentralized storage organizations that utilize blockchains, these systems

1
https://www.quora.com/What-is-the-total-size-storage-capacity-of-YouTube-and-at-what-

rate-is-it-increasing-How-is-Google-keeping-up-with-the-increasing-demands-of-Youtube

25

do not store the information on chain. The leading storage oriented blockchain,

Filecoin2, allows users to purchase storage space on other nodes’ computers and

uses the blockchain to validate the storage. Filecoin does not store one’s data on

chain, as this would require every node in the network to store this data. Benchmark

design needs to consider cases where a blockchain application may interoperate with

o↵-chain data that is not stored on-chain but only secured on-chain. Treating such

data as fully on-chain does not produce useful benchmark results since economic

forces would drive real users to the o↵-chain-stored, on-chain-secured approach.

In addition to choosing relevant workloads, when designing Blockbench v3, we

strived for a variety of transaction types and arrival distributions. Blockbench (v1)

[3, 8, 15] was composed of relevant workloads, but lacked variety. Transactions

all represent similar actions, primarily sending and receiving tokens. When Block-

bench (v1) was designed, there were not as many developed transaction types as the

blockchain industry was much younger. Blockbench v3 focuses on a broader inter-

pretation of “transaction”. Workloads are composed of a mix of di↵erent transaction

types associated with the application represented by the workload. For example, the

Token Exchange workload is composed of transactions including supplying liquidity,

withdrawing liquidity, and token trades. This mix of transactions is averaged to-

gether to form the measured “transaction”. In addition to a variety of transactions,

we wanted a variety of arrival distributions. Arrival distribution refers to the time in

which the blockchain is “made aware” of each transaction. For the Token Exchange

workload, the arrival distribution is somewhat constant, with X transactions being

called per second. To achieve a variety, we included a sports betting workload. As

soon as the big game is over a sports betting application knows exactly who needs

to be paid out. In this instance, the arrival distribution has all of the transactions

2
https://file.app/

26

called at time 0. This variety ensures that the results produced from each workload

are di↵erent from each other and provide a wider range of information. By choosing

a variety of relevant use cases, the transactions, arrival distributions, and metrics

associated with each workload are naturally a variety. Transactions include liquidity

supply and withdrawal, token trading, NFT minting, NFT lists and sells, as well as

simple sending of tokens between wallets.

4.2 Blockbench v3 Workloads

Blockbench v3 is composed of 4 workloads: a decentralized token exchange, an NFT

marketplace, NFT minting, and a sports betting site. These workloads use a variety

of transaction types and arrival distributions to cover a range of blockchain use cases.

The workload sizing, transaction mix, and arrival distribution of the workloads are

determined through historical data from Web3 applications that perform similar

tasks to the workload, or historical demand from Web2 equivalents. For the sake

of benchmarking, these workloads are simplified, representing the core functionality

required to complete these tasks.

Token Exchange

The first Blockbench v3 workload is a decentralized token exchange roughly based on

Uniswap-V2 [12], an application that allows users to trade tokens of type A for tokens

of type B for a small fee. The exchange is an automated market maker that calculates

exchange rates automatically and removes the need for a central party to create a

market. In addition to using the exchange to swap tokens, users can earn rewards

by providing liquidity to the exchange. When a user is done providing liquidity,

that user can retrieve the tokens and the share of the fees generated by swaps using

liquidity that had been provided. This workload is composed of transactions for

providing liquidity, retrieving liquidity, and swapping tokens. To simplify the smart

27

contract, we do not implement the reward function of the liquidity pool, due to

the complex economic model. The workload sizing, transaction mix, and arrival

distribution are generated from Uniswap-V2 historical data.

NFT Marketplace

The next Blockbench v3 workload represents the trading volume of an NFT mar-

ketplace. NFT marketplaces allow users to list, sell, and buy NFTs. Non-fungible

tokens (NFTs) are one-of-a-kind tokens that are tied to a digital asset. Owning the

token proves ownership of the tied digital asset. NFTs have a very high potential for

practical real-world application. NFTs can be used for titles/deeds of a car or house,

tickets for concerts or flights, or licensing of music or other creative works. Despite

this potential, most NFT usage right now is digital art. Our inclusion of this work-

load is motivated not by recent NFT fads, but rather by the long-term application

potential in business and government. NFT transactions require di↵erent proto-

cols than those for simple debit/credit transactions, broadening the pool of features

measured by Blockbench v3. This workload is composed of listing transactions,

posting of an NFT, sale transactions, and the transfer of funds and NFT. These

features represent the core functionality of an NFT marketplace. Workload sizing,

transaction mix, and arrival distribution for this workload are based on OpenSea

historical data.

NFT Minting

The third Blockbench v3 workload is an NFT-minting workload. NFT minting is the

process of generating an NFT. This process is interesting as a unique virtual asset

is created. As mentioned above, NFTs have many potential uses but the current

digital-art use case creates a particularly interesting transaction type. In a digital-

28

art collection, each piece has unique traits. These traits allow each piece to be part

of the whole collection but unique in its own way. To mint an NFT in this style, a

random number is generated to determine the traits of the NFT being minted. This

generated number needs to be di↵erent from every NFT minted in the past to avoid

duplicate pieces being created. Once a unique random number has been generated

the associated artwork needs to be tied to a token. This is done using Interplanetary

File Storage (IPFS)3. After the artwork is tied to this token, the token is given to

the user. This workload does not require an arrival distribution as the structure of

the workload provides all transactions at time 0 (because the typical NFT project

does most, if not all, minting at the initial deployment of the NFT project). The

sizing for the workload is based on common NFT project sizes.

Sports Betting

The last workload of the Blockbench v3 benchmark represents the tra�c of a sports-

betting website. Sports betting is a large industry that revolves around a middleman

bookie that could easily be replaced with a smart contract. In the time leading up to

the game, users will place bets on the game and then once the game ends all of the

winners need to be paid out. This workload represents the calculation of winners and

the payment to these winners. As soon as the game ends, all information is available

to the contract and thus all winners are known. This creates an interesting arrival

distribution where all transactions start at time 0, allowing for the blockchain to

operate at maximum throughput. Although we are modeling a Web3 sports-betting

environment, we have sized the workload using data from current Web2 sports-

betting sites such as Fanduel on games of varying sizes.

3
The actual piece of digital art is likely a large data item. Because on-chain storage is expensive,

our workload uses IPFS for o↵-chain storage of the NFT itself with that o↵-chain data bound to

the generated token

29

4.3 Blockbench v3 Macro Metrics

The macro metrics proposed by Blockbench v3 are designed around the central

trilemma of blockchain. The trilemma states that a successful blockchain needs to

be decentralized, scalable, and secure. However, in practice, a blockchain struggles

to maximize all three of these pillars. A decentralized blockchain’s main feature is

the lack of a central authority. Without a central authority to control consensus,

blockchains use decentralized consensus algorithms to ensure security in the decen-

tralized environment; however, these algorithms tend to scale poorly. Bitcoin has

high security and is completely decentralized, but has very slow performance. If

the blockchain aims to prioritize scalability while maintaining its decentralized sta-

tus, then the requirements for consensus will be lessened, possibly leading to worse

security. If the blockchain has high security and high performance, then a central

authority is required to process the transactions. Visa, although not a blockchain,

has very high security and also very high performance, but is obviously a central-

ized organization. This trilemma is a triangular spectrum in which moving towards

two of the pillars brings us away from the third. While these features are at odds

with each other, the Blockbench v3 macro metrics allow developers to choose which

features suit their requirements and which blockchains maintain these features the

best.

Decentralization

The first pillar of the trilemma, decentralization, cannot be tested in a small test

environment and does not necessarily connect with metrics like scalability and se-

curity. In addition, decentralization is di�cult to quantify, especially in a fair and

standard format. For this reason, our current implementation does not support any

macro metrics regarding decentralization

30

Scalability

The main elements the macro metrics focus on are scalability and security. For

scalability, the macro metric comes from measuring the micro metrics of a given

workload with di↵erent numbers of nodes. Running the benchmark with 4, 8, 16, 24,

and 32 nodes provides a set of micro metrics that can be graphed against the number

of nodes. This graph can then be curve-fit to extrapolate how the blockchain will

perform in a full-scale environment. The macro metric is the function provided by

this curve-fitting process. Measuring with a larger number of nodes would provide

more accurate results, however, it is unreasonable to expect every blockchain to

have a test environment with more than 32 nodes. Scalability provides insight into

how blockchain performance is a↵ected as more nodes join the network. As more

nodes join, the network is more decentralized and may have more computing power4,

however, responses from more nodes are needed to reach consensus. Users can use

the results provided by scalability to see how two blockchains would perform at the

same size, despite the deployed, live, chains being di↵erent sizes.

Fault Tolerance

For security, the macro metrics crash-fault-tolerance and nefarious-fault-tolerance

explore the e↵ects of performance when nodes are not behaving properly. Looking

at the consensus algorithm used, it can easily be determined how many nodes are

required to perform correctly for a system to work. A blockchain cannot function

below that threshold. For fault tolerances, the macro metrics explore the impact

on performance as this threshold is approached. Crash fault tolerance measures the

performance change as the number of nodes that return nothing increases. To mea-

4
In most blockchains, every node runs every transaction so the added computing power adds

no significant ability to do more work. This remains true in general for sharded blockchains since

the number of shards is normally fixed independently of the number of nodes.

31

sure crash fault tolerance, run a workload on a 32-node blockchain with 0, 4, and

8 faulty nodes. In this metric, faulty nodes return nothing during consensus, repre-

senting nodes that have crashed. With each amount of faulty nodes, we measure the

performance of the relevant micro metrics. The crash fault tolerance macro metrics

are composed of the ratios of the performance, with 0:4 faulty nodes and 0:8 faulty

nodes. To get the nefarious fault tolerance, the same steps are performed, except the

faulty nodes return random5 responses, emulating an attack. These macro metrics

provide insight into how well blockchains can handle attacks and how much their

performance is a↵ected during an attack.

5
While the actual definition of malicious nodes is omnisciently evil behavior representing the

worst possible case for a correctness proof, actual construction of such behavior for a workload is

not possible as it is equivalent to the halting problem, which is proven to be undecidable.

32

5 Preliminary Results

Blockbench v3 is still a work in progress. The driver is up and running however

there is still a lot of work to be done. For each blockchain benchmarked, workload

smart contracts need to be coded, workload transaction lists need to be generated,

an interface between the worker nodes and the blockchain needs to be developed,

and a full blockchain network needs to be hosted to run the transactions within

the benchmark. To prove that our framework is useful, and the driver is capable

of executing workloads and measuring performance, we implemented the Token

Exchange workload for Ethereum and Quorum.

Launched in 2015, Ethereum was the first platform to support smart contracts,

decentralized applications, and layer-two tokens while using the blockchain to pro-

tect from fraud, downtime, and interference from third parties. Choosing Ethereum

as a place to start was both acknowledgement to its industry dominance, but

stemmed more from our familiarity with Solidity, the smart contract programming

language, and ability to spin up an Ethereum network for testing. Ethereum cur-

rently runs a proof-of-stake consensus algorithm, however our tests use proof-of-

authority.

We have also implemented support for Quorum1, an “Enterprise-focused” fork

of Ethereum with di↵erent protocols designed for a private environment. Quorum

provides users with private transactions as well a permissioned mode for more net-

work control. Most importantly Quorum uses RAFT consensus for fault-tolerance

which boasts higher performance than traditional Ethereum consensus. Quorum

conveniently uses the same smart contract language as Ethereum, Solidity, which

allowed us to use the contracts coded for Ethereum again.

Although these blockchains are not as guilty for boasting large performance

1
https://www.geeksforgeeks.org/quorum-blockchain/

33

Figure 5.1: Token Exchange Workload Experiment Results

claims as other discussed blockchains, they were faster to develop and allowed us

to run experiments faster. Figure 5.1 shows the results of running Backbench v3’s

Token Exchange workload Ethereum and Quorum. The results provided show the

abilities of the benchmark driver and serve as a proof-of-concept for the BBSF and

Blockbench v3.

For each blockchain, the experiment was run at two di↵erent sizes represented

by R-10 and R-50. These numbers represent how many transactions each worker

client received. For each experiment, we measured the throughput and latency with

4,8, and 16 nodes, with a finality of one block. While the wider blockchain industry

will require more nodes to be used in testing for the results to be accepted, we can

still draw some conclusions at these lower counts.

34

Starting with the R-10 experiments we can see that Quorum is significantly

faster than Ethereum. Quorum has higher throughput at all node amounts and

far less latency. Most blockchain companies would chose their highest throughput

and publish this information without looking at the larger picture presented by the

graphs. While Quorum does have better numbers, their trends are worse. Using the

scalability macro metric, we can see that Ethereum appears to scale far better than

Quorum (the actual macro metric draws curve fits with more amounts of nodes,

drawing trends from only 3 data points is not very reliable). When increasing the

size of the network, Ethereum’s throughput and latency remain constant, implying

that a fully deployed blockchain would be able to handle this workload. Quorum has

higher throughput and lower latency, but the scalability macro metric shows that

they scale much worse than Ethereum. As more nodes are added to the network,

the throughput quickly falls o↵ and the latency greatly increases.

The results of the R-50 experiments tell a similar story. Ethereum maintains

almost the same performance with 5 times the amount of transactions being called,

while Quorum is greatly a↵ected. With a network of only 4 nodes, Quorum is able

to reach an average throughput of 964 TPS, but cannot even handle the workload

if there are 8 nodes in the network. Ethereum maintains its throughput at 76 TPS,

dropping to 72 TPS with 16 nodes. A fully deployed Ethereum blockchain could

handle this workload, the scalability metric, showing it should have around 70 TPS,

while a Quorum network with only 8 nodes cannot.

These results perfectly exemplify the problems with current blockchain bench-

marking. Organizations can pick and choose what results they want to report,

without reporting failures. Quorum could report a throughput of 964 TPS, over

twelve times faster than Ethereum, without technically lying. Using the BBSF re-

porting format would ensure that these failures be reported and allow third parties

35

to verify the claims being made. This would show that Quorum does have a higher

maximum throughput, but the overall network cannot handle nearly the amount of

work that Ethereum can when deployed at scale.

36

6 Summary of Contribution

The industry of blockchain is not standardized. Without proper standardization

and transparency, the results marketed by blockchain companies cannot be com-

pared or verified by independent users. We propose that the BBSF could solve these

problems, by creating standardized, relevant, and transparent benchmarks[14]. The

BBSF requires extensive descriptions of every aspect of workloads including stan-

dardized transaction definitions, transaction mix, arrival distribution, smart con-

tract implementations, and micro-metric definitions. The BBSF provides a frame-

work for metric structure that provides easy to compare, relevant, macro metrics

that are generated and supported through the micro-metrics of many experiments.

The BBSF provides a driver to execute and measure the workloads within the bench-

mark in a standardized fashion, ensuring no blockchain has any advantage over an-

other. The reporting format proposed by the BBSF requires reporting of all aspects

of the runtime environment, workload parameters, and the micro metrics used to

support each macro metric. This transparency will allow for better comparison

between results and promote third party verification of results.

Our implementation of this framework, Blockbench v3, is proposed benchmark

for web3 applications on a layer 1 blockchain. This benchmark serves as both a

relevant benchmark for layer 1 blockchains, but also as a proof of concept for the

BBSF as a whole. Blockbench v3 proposes four relevant and di↵erent workloads

with a variety of transaction types, transaction mixes, arrival distributions, and

micro metrics. Blockbench v3 also proposes two macro metrics for easier comparison

between blockchains that represent far more than the result of a single experiment.

By generating relevant, comparable, and transparent results we hope to prove the

validity of the BBSF as the new standard framework.

37

7 Future Work

This project is alive and continuing development after my graduation. The team I

worked with, as well as new students are finishing the benchmarking we are pursuing

currently and will likely expand the benchmark into new areas.

7.1 Short Term

The short term future of this project is focused on getting more numerical perfor-

mance results. This will require the full set of workloads and metrics to be developed

for each of the current set of blockchains that we are evaluating as well as creating

the full set of workloads for more blockchains. More results will allow for more

comparison, creating a network e↵ect that increases the utility of each blockchain

benchmarked. Currently we are focused on benchmarking Solana and Aptos.

Solana

Founded in 2017, Solana provides a similar platform to Ethereum in terms of com-

puting capabilities but with a di↵erent approach to consensus. Solana supports the

same smart contract and token functionality that Ethereum does using a language

called Serum that closely resembles Ethereum’s Solidity. Solana uses a proof of

stake system similar to the one explained in the Ethereum section but utilizes a tool

Solana calls “proof of history” to reduce the time to validate transaction ordering.

One problem Ethereum faces in transaction ordering stems from decentralized

time. As the network is decentralized, there is no guarantee that di↵erent nodes

are running with perfectly synchronized clocks. When a block is published, the

timestamp used is created based on the clock of the node that created the block. In

a decentralized setting, timestamps may occur at slightly di↵erent times due to the

nodes being slightly out of sync. This sync di↵erence comes from microsecond delays

38

from processing transactions and passing this information to the rest of the network,

as well as the possibility of the computers simply having a di↵erent set time. The

Ethereum “Yellow Paper” only requires that a given block’s timestamp comes after

the previous block’s timestamp, while popular protocol implementations Geth and

Parity also require the timestamp to be within 15 seconds of the local node time [5].

These requirements have low impact on the slower Ethereum chain with blocktimes

of around 12 seconds [Figure 2.1], but in a much faster system, millisecond sync

di↵erences can cause major problems for block ordering and transaction validation.

Solana uses proof of history1 to build the timestamps into the blockchain itself.

When performing a transaction, Solana appends the hash of the current state with

all previous states. The state, inputs, and a count are then published on chain

setting an upper bound on the time a transaction occurred. There is also a lower

bound, the upper bound of the previous state, which can be verified through the

previous hashes. This proof of history provides accurate times as well as all previous

states for the Solana blockchain, allowing any user to validate the entire blockchain

with a small amount of information. Proof of history allows Solana to achieve much

faster performance than Ethereum. Solana claims it can support 400,000 TPS, a

large step up from Ethereum’s 25 [Table 2.1]. In addition to benchmarking di↵erent

consensus algorithms clarification on the validity of Solana’s claims through a third

party, rather than the Solana organization, is a priority.

Aptos

In 2022, Meta abandoned their cryptocurrency project Diem (formerly known as

Libra). The project was intended to be a low fee stablecoin to be used worldwide.

While the idea of a worldwide stablecoin is good, many people were worried about

1
https://solana.com/news/proof-of-history

39

giving Facebook this power. Throughout its development the tech side of the project

appeared sound, while the fear was in the ethics behind a private company running

the world’s money supply. When the project was abandoned, the developers at

Diem founded Aptos as a startup using the original code as a base.

Aptos claims to support 160k transactions using a parallel execution engine [4].

The Aptos team designed a blockchain specific version of the Software Transactional

Memory (STM) library called Block-STM. STM is an approach to parallel trans-

action processing that processes all transactions in parallel while keeping track of

memory accesses. After processing all transactions, transactions that have memory

conflicts are aborted and re-executed [4]. This approach was adapted for blockchain

use. As transactions are uploaded in blocks, transactions do not need to be com-

mitted individually and allows a lazy commit system to be implemented that avoids

synchronization. The Aptos programming language, Move, runs on a virtual ma-

chine which also helps with safe memory access. Lastly, while most STM libraries

target non-determinism, Block-STM uses a fixed ordering of transactions which al-

lows for conflicts to be resolved easier and allow overall throughput to increase.

7.2 Long Term

After benchmarking enough chains to prove the e↵ectiveness of Blockbench v3, there

are other ideas that can be explored. While the workloads presented by Blockbench

v3 measure metrics that are relevant to the usage of blockchains today, the structure

of the layer 1 blockchain is evolving to be faster, more scalable, and easier to validate.

Two intriguing areas to explore are layer 2 blockchains, and the sharding of layer 1

blockchains.

40

Layer 2

Layer 2 blockchains2 are blockchains that run on top of layer 1 blockchains. Layer

2 blockchains use their own code and tokens to perform execution that a layer 1

blockchain may not support. Periodically they bundle the recent activity on their

chain and publish this bundle on the layer 1 blockchain. By doing so, the layer 2

chain can use the robust security provided by the layer 1 chain while running code

that the layer 1 chain may not support.

The primary support for layer 2 chains beyond their wider code functionality

is the scalability that they bring to blockchain. Bringing transactions to layer 2

removes transactions from the layer 1 chain that may be congesting the system and

slowing the performance. These transactions are periodically bundled together and

recorded on the layer 1 chain to take advantage of the layer 1 chains security and

decentralization. This bundling is referred to as a “rollup”2. By bundling these

transactions, gas fees are reduced, fewer transactions are on the layer 1 blockchain,

and the time to validate transactions greatly decreases. This is because a node val-

idating a block treats the rollup as a single transaction while representing hundreds

of transactions. Rollups are treated as either “optimistic” or use a zero-knowledge

proofs to verify the validity of the transactions in the rollup. Optimistic rollups al-

low the node to assume that every transaction within the rollup is valid. The rollup

can be challenged if needed, and a more rigorous process is performed to verify the

transactions. Some rollups contain zero-knowledge proofs that prove the validity

of the transactions contained in the rollup. For both types, the time to validate

hundreds of transactions is greatly reduced, increasing the performance of the layer

1 chain.

Benchmarking layer-2 blockchains is both a complex coding challenge, but also

2
https://ethereum.org/en/layer-2/

41

an algorithmically di�cult one. There are many di↵erent metrics that can be ex-

plored and many di↵erent ways to approach benchmarking. The first metric to ex-

plore is the increase in the performance of the layer-1 chain by using a layer-2 chain.

A workload could be run on layer-1 chain A using two di↵erent layer-2 blockchains B

and C. The performance of A could be measured with no layer-2 chain, with layer-2

chain B, and layer 2 chain C. The change in performance by adding the di↵erent

layer-2 chains could be compared to see which chain is “better”.

The metrics to measure performance will be quite di↵erent in this environment

than in our current implementation. The main feature provided by layer 2 is the

quicker validation of blocks due to rollup. Our current metrics measure the through-

put and latency of the blockchain, but do not inspect the time for individual nodes

to validate specific blocks. This process becomes more complicated a user wants to

compare two layer-2 blockchains that run atop di↵erent layer-1 blockchains. Layer-2

chain B may appear worse than layer-2 chain C, but that may only be a result of

the performance and interoperability of their underlying layer-1 chains. While ratios

between the performance of the underlying chains may allow some comparison be-

tween the layer-2 chains, it will be important to find an equitable and standardized

approach.

Sharding

Another interesting area to benchmark is sharded blockchains. Sharding3 refers to

the act of splitting a blockchain into multiple di↵erent parallel blockchains. By

splitting the blockchain, transactions on one shard are only processed by nodes

running that shard, rather than processing every transaction the way they do in a

normal blockchain. This allows the overall blockchain to process more transactions

3
https://education.district0x.io/general-topics/understanding-ethereum/ethereum-sharding-

explained/

42

and may be a sustainable approach to scaling the blockchain’s throughput. Each

shard handles its own transactions and provide updates to the main blockchain

when needed. Metrics for a sharded blockchain would look similar to a layer 1

blockchain, however they would represent additional features rather than just the

consensus algorithm. A uniform distribution of accounts and data between shards

will allow for better concurrency, whereas having shards with disproportionately

more accounts and data negates the e↵ectiveness of the sharding.

Benchmarking sharded blockchains is also more complicated than our current

implementation. Transactions that stay within a shard are simple and fast, while

transactions that cross between two shards require more complex protocols. If a

blockchain organization were to publish performance metrics about their sharded

blockchain without revealing the mix of cross-shard transactions users would not

know whether the workload represents an actual sharded blockchain or if the results

are just many blockchains in parallel. Finding a relevant standard for the amount of

cross-shard transactions would be paramount to benchmarking sharded blockchains.

In addition to cross-shard transactions, the fault tolerance of a sharded system

is very important. Normal blockchains face “51%” attacks in which an attacker

controls 51% of the network hash rate and act nefariously with a controlling share

of the network’s votes. “In a 100 shards system, it only takes 1% of the network hash

rate to dominate a shard”[7]. Building a robust system to deal with “1%” attacks

is important for a sharded blockchain to succeed. Benchmarking this robustness

through a metric similar to Blockbench v3’s fault tolerance metric would require a

di↵erent approach than the current implementation but would provide important

results.

43

Bibliography

[1] https://github.com/KunPengRen/blockbench-3.0.

[2] Hyperledger caliper. Web document, 2023. https://hyperledger.github.

io/caliper/.

[3] Dinh Tien Tuan Anh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. Untangling blockchain: A data processing view of blockchain systems.

IEEE Transactions on Knowledge and Data Engineering, 30(7):1366–1385, July

2018.

[4] Aptos. Block-stm: How we execute over 160k transactions per second on the

aptos blockchain, Jun 2022.

[5] Rob Behnke. What is timestamp dependence?, 2023. https://www.halborn.

com/blog/post/what-is-timestamp-dependence.

[6] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. Algorand

agreement: Super fast and partition resilient byzantine agreement. Cryptology

ePrint Archive, Paper 2018/377, 2018. https://eprint.iacr.org/2018/377.

[7] Jordan Cli↵ord. Crossing shards, Jul 2019.

[8] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and

Kian-Lee Tan. Blockbench: A framework for analyzing private blockchains.

In Proc. ACM SIGMOD Conference on the Management of Data, pages 1085–

1100, 2017.

[9] Produced by Digital Editors. 2022 tesla model s plaid records unreal 0-60

mph time. Web document, Jul 2021. https://www.motorbiscuit.com/2022-

tesla-model-s-plaid-records-unreal-0-60-mph-time/.

44

https://github.com/KunPengRen/blockbench-3.0
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://www.halborn.com/blog/post/what-is-timestamp-dependence
https://www.halborn.com/blog/post/what-is-timestamp-dependence
https://eprint.iacr.org/2018/377
https://www.motorbiscuit.com/2022-tesla-model-s-plaid-records-unreal-0-60-mph-time/
https://www.motorbiscuit.com/2022-tesla-model-s-plaid-records-unreal-0-60-mph-time/

[10] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gau-

thier Voron. Diablo-v2: A benchmark for blockchain systems. page 14, 2022.

[11] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[12] Hayden Adams and Noah Zinsmeister and Dan Robinson. Uniswap v2 core.

Web document, 2020. https://blog.uniswap.org/whitepaper.pdf/.

[13] Mark Kane. Motortrend proves tesla can’t truly do 0-60 in under 2 sec-

onds, Jun 2021. https://insideevs.com/news/514979/tesla-cant-60mph-

under-2seconds/.

[14] Ren Kunpeng and Je↵erson Van Buskirk. Bbsf: Blockchain benchmarking

standardized framework, 2023.

[15] Dumitrel Loghin, Tien Tuan Anh Dinh, Aung Maw, Gang Chen, Yong Meng

Teo, and Beng Chin Ooi. Blockchain goes green? part II: characterizing the

performance and cost of blockchains on the cloud and at the edge. CoRR,

abs/2205.06941, 2022.

[16] Omid Malekan. The Story of Blockchain. Triple Smoke Stack, 2018.

[17] Mateusz Raczynkski. What is the fastest blockchain and why? analysis of 43

blockchains. Web document, 2021. https://alephzero.org/blog/what-is-

the-fastest-blockchain-and-why-analysis-of-43-blockchains/.

[18] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. An

overview of smart contract and use cases in blockchain technology. In 2018

9th International Conference on Computing, Communication and Networking

Technologies (ICCCNT), pages 1–4, 2018.

45

https://blog.uniswap.org/whitepaper.pdf/
https://insideevs.com/news/514979/tesla-cant-60mph-under-2seconds/
https://insideevs.com/news/514979/tesla-cant-60mph-under-2seconds/
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/

[19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Web docu-

ment, 2008. https://bitcoin.org/bitcoin.pdf.

[20] Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, and Johan Pouwelse. Gromit:

Benchmarking the performance and scalability of blockchain systems, 2022.

[21] Crypto Research. The time to finality for solana, Sep 2022. https:

//cryptoresearch.report/crypto-research/the-time-to-finality-

for-solana/.

[22] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, and

Gang Chen. Blockchains: Decentralized and Verifiable Data Systems. Springer

Nature, 2023.

[23] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. Bctmark: a frame-

work for benchmarking blockchain technologies. In 2020 IEEE/ACS 17th Inter-

national Conference on Computer Systems and Applications (AICCSA), pages

1–8, 2020.

[24] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange,

John L. Henning, and Paul Cao. How to build a benchmark. In Proceedings

of the 6th ACM/SPEC International Conference on Performance Engineering,

ICPE ’15, page 333–336, New York, NY, USA, 2015. Association for Computing

Machinery.

Claims Table Sources

1. etherscan.io/charts

2. decrypt.co/34204/ethereum-2-0-will-walk-and-roll-for-two-years-
before-it-can-run

3. ethereum.org/en/developers/docs/blocks/

46

https://bitcoin.org/bitcoin.pdf
https://cryptoresearch.report/crypto-research/the-time-to-finality-for-solana/
https://cryptoresearch.report/crypto-research/the-time-to-finality-for-solana/
https://cryptoresearch.report/crypto-research/the-time-to-finality-for-solana/
etherscan.io/charts
decrypt.co/34204/ethereum-2-0-will-walk-and-roll-for-two-years-before-it-can-run
decrypt.co/34204/ethereum-2-0-will-walk-and-roll-for-two-years-before-it-can-run
ethereum.org/en/developers/docs/blocks/

4. cryptoresearch.report/crypto-research/the-time-to-finality-for-
solana/

5. solana.com/

6. academy.binance.com/en/glossary/finality

7. cryptonews.com/news/celo-to-be-fastest-evm-chain-by-end-of-
2022-co-founder-says.htm

8. ethereum.org/ph/roadmap/single-slot-finality/

9. coindesk.com/tech/2023/02/14/bnb-chain-aims-to-double-
transaction-speed-targets-zk-tooling-in-2023-roadmap/

10. blog.celo.org/consensus-and-proof-of-stake-in-the-celo-
protocol-3ff8eee331f6

11. developer.algorand.org/docs/get-started/basics/why_algorand/

12. https://algorand.com/resources/algorand-announcements/algorand-
2021-performance

13. https://www.lumenauts.com/blog/how-many-transactions-per-
second-can-stellar-process

14. https://blog.cryptostars.is/how-stellar-solves-the-blockchain-
finality-challenge-b5678ebebd9d

47

cryptoresearch.report/crypto-research/the-time-to-finality-for-solana/
cryptoresearch.report/crypto-research/the-time-to-finality-for-solana/
solana.com/
academy.binance.com/en/glossary/finality
cryptonews.com/news/celo-to-be-fastest-evm-chain-by-end-of-2022-co-founder-says.htm
cryptonews.com/news/celo-to-be-fastest-evm-chain-by-end-of-2022-co-founder-says.htm
ethereum.org/ph/roadmap/single-slot-finality/
coindesk.com/tech/2023/02/14/bnb-chain-aims-to-double-transaction-speed-targets-zk-tooling-in-2023-roadmap/
coindesk.com/tech/2023/02/14/bnb-chain-aims-to-double-transaction-speed-targets-zk-tooling-in-2023-roadmap/
blog.celo.org/consensus-and-proof-of-stake-in-the-celo-protocol-3ff8eee331f6
blog.celo.org/consensus-and-proof-of-stake-in-the-celo-protocol-3ff8eee331f6
developer.algorand.org/docs/get-started/basics/why_algorand/
https://algorand.com/resources/algorand-announcements/algorand-2021-performance
https://algorand.com/resources/algorand-announcements/algorand-2021-performance
https://www.lumenauts.com/blog/how-many-transactions-per-second-can-stellar-process
https://www.lumenauts.com/blog/how-many-transactions-per-second-can-stellar-process
https://blog.cryptostars.is/how-stellar-solves-the-blockchain-finality-challenge-b5678ebebd9d
https://blog.cryptostars.is/how-stellar-solves-the-blockchain-finality-challenge-b5678ebebd9d

Vita

Je↵erson Van Buskirk grew up in Hingham, Massachusetts with his parents Peter

and Patricia Van Buskirk. Je↵erson attended Lehigh University from 2018 to 2022

where he studied Computer Science and Business, graduating with highest honors.

in 2022, Je↵erson was awarded the Gulden Memorial Award for excellence in algo-

rithms and received the Lehigh University Presidential Scholarship. Je↵erson then

attended Lehigh University for his masters as a Presidential Scholar, graduating in

May 2023. During his masters, Je↵erson was a grader for “Blockchain Concepts and

Applications” and “Blockchain Algorithms and Systems”. In addition to his grad-

ing, Je↵erson was a part of the Scalable Systems and Software research group as a

student of Professor Hank Korth. Following graudate school, Je↵erson is beginning

work at FAST Enterprises, as a data engineer.

48

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Introduction
	Initial Research
	Defining a Proper benchmark
	Blockchain vs. Database Benchmarking
	Current Blockchain Benchmarks
	Problem Statement

	BBSF Framework
	Standardized Workload Framework
	Standardized Metrics Framework
	Standardized Benchmark Driver
	Standardized Reporting Framework

	Blockbench v3
	Workload Design
	Blockbench v3 Workloads
	Blockbench v3 Macro Metrics

	Preliminary Results
	Summary of Contribution
	Future Work
	Short Term
	Long Term

	Bibliography
	Vita

