
12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 1/37

Share On...

Crowdfunding Dapp
with Reach
Finished Dapp repo: https://github.com/JossDuff/reach-
crowdfund/
If this tutorial is helpful at all please leave a star :)

Disclaimer: I’m not affiliated with Reach and this project is
not audited and should not be used in a production
environment.

Joss Duff October 24, 2022

Reach

JavaScript

Intermediate · 1 hour +
Share

Developer
Portal Search Build Learn Discover Connect Challenges

https://twitter.com/share?ref_src=twsrc%5Etfw&url=https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/&text=Crowdfunding%20Dapp%20with%20Reach
https://www.facebook.com/sharer/sharer.php?u=https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/
https://www.linkedin.com/shareArticle?mini=true&url=https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/&title=Crowdfunding%20Dapp%20with%20Reach
https://github.com/JossDuff/reach-crowdfund/
https://developer.algorand.org/u/joss/
https://developer.algorand.org/tutorials/?level=all-level&complete_time=all-time&language=javascript
https://developer.algorand.org/
https://developer.algorand.org/challenges

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 2/37

Requirements
1. An IDE to code. Visual Studio Code is recommended

because of its Reach extension that supports Reach
syntax highlighting, keyword hover documentation,
real time diagnostic highlighting for Reach compilation
errors, etc.

2. Basic understanding of how to run Reach apps. Reach
download instructions

3. Docker - used in running Reach apps. get Docker

Background

CROWDFUNDING

“The practice of funding a project or venture by raising
money from a large number of people, in modern
times typically via the Internet.” -Wikipedia

Most people have contributed to a crowdfunding campaign
on a popular website like Kickstarter, GoFundMe, Indiegogo,
or Patreon. Crowdfunding is a great example of an
application that can be improved upon in Web3. Currently,
crowdfunding companies act as a trusted intermediary and
control the collection and distribution of funds as well as the
taking of fees to turn a profit. This can all be replaced with
smart contracts, removing the need for a trusted
intermediary and any fees needed to sustain a whole
company without any loss of functionality.

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/docs/get-started/dapps/reach/
https://docs.docker.com/get-docker/
https://en.wikipedia.org/wiki/Crowdfunding
https://hbr.org/2022/05/what-is-web3
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/#smart-contracts
https://developer.algorand.org/
https://developer.algorand.org/challenges

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 3/37

The crowdfunding model is simple

1. Someone opens a fund to receive donations for a
project (the “receiver”). They specify a goal amount of
money and a deadline to donate funds.

2. Anybody can donate money to the fund until it reaches
its deadline (the “funders”).

3. The deadline is reached and the fund does not accept
any more donations.

4. Two possibilities:
- The total amount of money donated is greater than or
equal to the goal amount specified by the receiver. In
this case, all the money donated is given to the
receiver.
- The total amount of money donated is less than the
goal amount specified by the receiver. In this case,
each funder receives back their donation.

REACH

“Reach is a domain-specific language for building
decentralized applications (DApps).” -Reach docs

This tutorial covers the building of a crowdfunding
decentralized application using Reach, a blockchain
development platform for writing smart contracts and
decentralized applications. Reach aims to remove the
possibility to introduce common smart contract bugs in your
program by abstracting away the raw smart contract coding
so the programmer can focus on the business logic of their
application. No prior smart contract coding is necessary to
build a full decentralized application using Reach.

A reach program consists of two files. A frontend index.js
and a backend index.rsh . You’ll recognize that the
frontend is a common JavaScript file, but you probably aren’t
familiar with the backend file extension. “.rsh” is Reach’s
own language for specifying actions of participants in a
DApp. Reach programs compile down into a smart contract.

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/
https://reach.sh/
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 4/37

More information in the Reach docs

Steps

1. Setup

2. Start the backend index.rsh

3. Setting up the fund

4. Funding period

5. Sending back donations if the fund met its
goal

6. Sending back donations if the fund DID
NOT meet its goal

7. Finishing index.rsh

8. Start the frontend index.mjs

9. Deploying contract from front-end

10. Helper functions

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 5/37

11. Create the tests

12. Run the tests

13. Done!

14. Improve your skills and test your
knowledge

In a terminal, navigate to the reach folder that you created
when installing reach.
Create a folder inside the reach folder for this project:
$ mkdir reach-crowdfund
$ cd reach-crowdfund

Now, create a template reach program:
$../reach init

This creates the index.rsh and index.mjs template files
required for a basic Reach DApp. It allows you to open the
files and start writing code. The index.rsh file is the DApp
and is written in Reach, and the index.mjs file is the frontend
of the DApp and is written in JavaScript.

Go ahead and run this template program:
$../reach run

Your output should look like:

1. Setup

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 6/37

Replace the contents of your index.rsh file with the
following:

'reach 0.1';

export const main = Reach.App(() => {

 // Receiver is the address creating the
fund to receive currency
 // It is the only participant
 const Receiver = Participant('Receiver',
{

 // Gets the parameters of a fund
 // By default, these values are local
and private
 receiverAddr: Address,
 deadline: UInt,
 goal: UInt,

 // For indicating to the frontend that
the contract is deployed
 // and the fund is ready to receive
payments.
 ready: Fun([], Null),
 });

2. Start the backend index.rsh

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 7/37

const Receiver = Participant('Receiver',
{...}); is the address creating the fund to receive
currency. This uses Reach’s participant and is the only
participant in this tutorial. A participant is a logical actor

which takes part in a DApp. It is associated with an account
on the consensus network. A participant has persistently
stored values, called its local state. It has a frontend which it
interacts with. A frontend is an abstract actor which supports

 // Funder API for any address to use.
 // For donating to and getting money
back (if fund doesn't reach
 // its goal) from a fund
 const Funder = API ('Funder', {
 // payFund function takes the amount
that the funder wants
 // to donate to the fund as a UInt.
 donateToFund: Fun([UInt], Bool),
 // Pays the funder back if the fund
didn't reach the goal.
 // Returns the amount the funder
previously donated.
 payMeBack: Fun([], Bool),
 });

 // Bystander API for any address to use.
 const Bystander = API ('Bystander', {
 // Indicates that the fund has reached
its deadline.
 timesUp: Fun([], Bool),
 // For displaying whether or not fund
met its goal.
 getOutcome: Fun([], Bool),
 });

 init();
});

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 8/37

a set of functions which consume and produce values; when
a participant invokes one of these functions it is referred to
as interaction. Read more about participants.

receiverAddr: Address, deadline: UInt, goal:
UInt, are the parameters of the fund that the receiver will
be creating. This values are specified in the frontend. Since
these are defined within a participant class, they start out
local and private variables known only to the receiver. In the
next step we will declassify these variables to make
them public, and then publish them to put them on the
blockchain.

ready: Fun([], Null), is the function signature for a
function that is defined in the front end. Argument types are
specified in [], and the return type follows. You can see this
function takes no arguments and has no return type. We will
call this later in this file simply to signal to the frontend that
the fund is ready to receive donations.

const Funder = API ('Funder', {...}); is any
address that donates to the fund. Instead of participant, this
is a Reach API. APIs are functions that can be called by other
contracts, as well as off-chain. Functions inside of an API
definition (ex: donateToFund) are called API member
functions and must be called exactly once during the
execution of a Reach program. Read more about APIs.

donateToFund: Fun([UInt], Bool) is for handling
donations to the fund. Any address can call this function with
a UInt (amount to donate). Returns a boolean.

payMeBack: Fun([], Bool) is a function for paying back
funders in the event the fund does not meet its goal. It takes
no arguments because we are paying back funders only their
initial donation, which is known to the dapp.

const Bystander = API ('Bystander', {...}); is a
bystander API. Bystander functions are callable by anyone to
progress the dapp.

timesUp: Fun([], Bool), for indicating to the frontend
that the funding period has reached its deadline and should

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/model/#term_participant
https://docs.reach.sh/rsh/appinit/#rsh_API
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 9/37

close to no longer receive any funds.

getOutcome: Fun([], Bool), for displaying to the
frontend whether or not the fund has met its goal.

init(); finalizes all of the available participants, views,
and compilation options. Below this we will write the logic of
our crowdfunding dapp.

Add the following to index.rsh after init(); but before the
closing }); :

 // Receiver declassifies details of the
fund.
 Receiver.only(() => {
 const receiverAddr =
declassify(interact.receiverAddr);
 const deadline =
declassify(interact.deadline);
 const goal =
declassify(interact.goal);
 });

 // The funder publishes the parameters
of the fund to the
 // blockchain.
 // Publish initiates a consensus step
and makes the values
 // known to all participants.
 Receiver.publish(receiverAddr, deadline,
goal);

3. Setting up the fund

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 10/37

Receiver.only(()=>{...}) is an action that only the
receiver participant makes. For our program we are having
the receiver declassify the parameters of the fund.
Declassifying turns a local private variable (default initial
state) into a local public variable that we can use in our
backend. However, we want anyone to be able to view the
parameters of the fund so we then
Receiver.publish(...) the declassified variables.

Publish is a type of consensus transfer where the variables
given to it are made public on the blockchain for all
participants to see.

commit(); moves the dapp from local state to consensus
state. The computations between “commit();”s are in local
state, meaning they are being computed for the individual
participant. Those computations are bundled together and
published to the blockchain when the dapp moves to
consensus state. States (“steps”) are a fundamental concept
of the Reach model. I found this diagram to be extremely
helpful when developing in Reach. Article with diagram.

 commit();
 Receiver.publish();

 // Indicate to the frontend that the
fund is ready.
 Receiver.interact.ready();

 // Mapping to keep track of amount that
each address donates
 // to the fund.
 const funders = new Map(Address, UInt);
 // Set for tracking which addresses have
donated.
 // Used verifying an address has donated
in the payMeBack
 // function.
 const fundersSet = new Set();

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/local/#declassify
https://docs.reach.sh/rsh/step/#rsh_publish
https://docs.reach.sh/guide/ctransfers/#guide-ctransfers
https://docs.reach.sh/model/#ref-model
https://docs.reach.sh/rsh/
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 11/37

Figure 3-1 States (steps) are a fundamental concept.

Receiver.interact.ready(); Calls the ‘ready()’
function (we wrote the signature for it in step 1) to indicate
to the frontend that the fund parameters are published and
the fund is ready to receive donations.

const funders = new Map(Address, UInt); is a
mapping from addresses to a UInt to keep track of how
much each address has donated to the fund.

const fundersSet = new Set(); is a set of addresses
for an additional verification of which address has donated to
the fund.

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 12/37

This is the logic for accepting and tracking donations for a
set amount of time.
Add the following to index.rsh after const fundersSet =
new Set(); but before the closing }); :

 // ParallelReduce to allow for any
address to donate to a fund.
 // Address can donate until fund
deadline is reached.
 const [keepGoing, fundBal, numFunders]
=
 // fundBal and numFunders starts at 0
and keepGoing starts as true.
 parallelReduce([true, 0, 0])
 // Define block allows you to define
variables/functions that
 // are used in the different cases.
 .define(()=>{
 const checkDonateToFund = (who,
donation) => {
 // Checks that the funder hasn't
donated yet
 check(!fundersSet.member(who),
"Not yet in set");
 // Doesn't allow donations of 0
 check(donation != 0, "Donation
equals 0");
 return () => {
 // Adds the funder to the
mapping with their donation.
 funders[who] = donation;
 // Adds the funder to the set of

4. Funding period

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 13/37

funders.
 fundersSet.insert(who);
 // Continues the parallel reduce
with the new fund balance
 // and number of funders.
 return [keepGoing, fundBal +
donation, numFunders + 1];
 };
 };
 })
 // Loop invariant helps us know things
that are true every time
 // we enter and leave loop.
 .invariant(
 // Balance in the contract is at
least as much as the total
 // amount in the fund
 balance() >= fundBal
 // The number of funders in the map
is the same as the
 // number of funders tracked by the
parallel Reduce.
 && fundersSet.Map.size() ==
numFunders
)
 .while(keepGoing)
 // API function for any address to
call as a funder to
 // donate to the fund. Is called with
'payment' UInt
 // indicating the amount of network
currency they want
 // to donate.
 .api(Funder.donateToFund,
 // Runs the checks in
checkDonateToFund function define in
 // .define() block of this parallel
Reduce.
 (payment) => { const _ =

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 14/37

checkDonateToFund(this, payment); },
 // Pay expression. Requests
'payment' amount from funder
 // and deposits into the contract.
 (payment) => payment,
 (payment, k) => {
 // Returns true for the API call,
indicating it was successful.
 k(true);
 // Calls the function within
checkDonateToFund to update the
 // funder mapping, funder set, and
parallel Reduce.
 return checkDonateToFund(this,
payment)();
 }
)
 // Things in this block only happen
after the deadline.
 .timeout(relativeTime(deadline), ()
=> {
 // Any bystander calls the timesUp
function, indicating the
 // parallel reduce has finised and
the fund reached its deadline.
 const [[], k] =
call(Bystander.timesUp);
 // Returns true for the timesUp API
call, indicating it was successful.
 k(true);
 // Returns false for keepGoing to
stop the parallelReduce.
 return [false, fundBal, numFunders
];
 });

 // Check to ensure that the balance in
the contract is always
 // greater than or equal to the

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 15/37

Here we use a parallelReduce statement so we can loop
until a condition is met (fund deadline). You can think of a
parallelReduce like a while loop. Like publish, parallelReduce
is a type of consensus transfer. Our parallel reduce will allow
many funders to donate to the fund at the same time.

const [keepGoing, fundBal, numFunders] defines
the variables that we will need to update and use in each
loop of the parallelReduce and parallelReduce([true,
0, 0]) starts the parallel reduce and gives our defined
variables their initial values (keepgoing=true, fundBal=0,
numFunders=0).

.define(()=>{...} Define block allows you to define
variables/functions that are used in the different cases of the
paralellReduce. In our define block we define const
checkDonateToFund = (who, donation) => {...} that
takes an address and a UInt amount and checks to make
sure that that address hasn’t donated to the fund yet and
returns a function to add the address to the donation
mapping and set of funders. For some practice, try to
implement functionality for funders to donate multiple
times.

invariant() are components of a while loop that we
know will always be true before and after each iteration of
the loop. In our invariant we assert that the balance in the
contract is at least as much as the total amount in the fund

calculated balance of the fund.
 assert(fundBal <= balance());

 // Outcome is true if fund met or
exceeded its goal
 // Outcome is false if the fund did not
meet its goal
 const outcome = fundBal >= goal;

 commit();

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/consensus/#term_parallel%20reduce%20statement
https://docs.reach.sh/guide/ctransfers/#guide-ctransfers
https://docs.reach.sh/rsh/consensus/#rsh_invariant
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 16/37

and the number of funders in the map is the same as the
number of funders tracked by the parallel Reduce.

.api(Funder.donateToFund,...) is an api function that
is callable throughout the loop. This api function allows
anyone to donate an amount to the fund. We wrote the
signature to this function back in step 2 (Setting up
index.rsh). Funder.donateToFund takes an integer and
the callers address.

(payment) => { const _ =
checkDonateToFund(this, payment); } calls the first
part of the function we defined in the ‘define’ block. This
takes the address of the caller and their desired donation
(payment int) and checks to make sure they haven’t already
donated.

(payment) => payment, is called a pay expression. This
takes an argument and sends a transaction to the calling
address requesting those funds. So here, we are requesting
the caller of Funder.donateToFund to send the indicated
payment amount to the contract address. If the caller

accepts the transaction then the function continues.

(payment, k) => {...} Passes in arguments for the
amount the caller just paid and k which we will use to return
the API call.

k(true); returns true for the Funder.donateToFund
API call. Remember in step 2 (Setting up index.rsh) we
indicated that this function returns a boolean.

return checkDonateToFund(this, payment)(); Calls
the function returned from checkDonateToFund to update
the funder mapping, funder set, and parallel Reduce to
reflect the new amount of funders and the total amount of
currency donated to the contract.

.timeout(relativeTime(deadline), () => {...}
This block executes when relativeTime(deadline) is
reached. Deadline passed in from the front end during the
initial fund creation. relativeTime counts until the given
amount of network time has passed.

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/step/#p_38
https://docs.reach.sh/rsh/compute/#rsh_relativeTime
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 17/37

const [[], k] = call(Bystander.timesUp); Any
bystander calls the timesUp function, indicating the parallel
reduce has finished and the fund reached its deadline.

return [false, fundBal, numFunders]; Returns
false for keepGoing to stop the parallelReduce.

assert(fundBal <= balance()); Check to ensure
that the balance in the contract is greater than or equal to
the calculated balance of the fund after the parallel reduce
exits. assert Always evaluates to true and adds this
assumption to the tests ran during compilation of a Reach
program. It is checking ‘<=’ and not just ‘==’ because at any
point anyone can send funds to a smart contract address
without using the functions within the smart contract.

const outcome = fundBal >= goal; Outcome is true if
fund met or exceeded its goal outcome is false if the fund did
not meet its goal.

commit(); moves the dapp from local state to consensus
state. The computations between “commit();”s are in local
state, meaning they are being computed for the individual
participant. Those computations are bundled together and
published to the blockchain when the dapp moves to
consensus state. I found this diagram to be extremely
helpful when developing in Reach, as states (“steps”) are a
fundamental concept of the Reach model.

This handles the case in which the fund met its goal and all
the donations are sent to the receiver.

5. Sending back donations if the fund met its
goal

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/compute/#rsh_assert
https://docs.reach.sh/rsh/#p_10
https://docs.reach.sh/model/#ref-model
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 18/37

Insert the following after commit(); but before the closing
}); :

const [[], u] = call(Bystander.getOutcome);
Allows any bystander to call the ‘getOutcome’ function to get
the status of the fund. This function takes no arguments
(notice the empty argument array []) and it returns a
single boolean u . The outcome boolean is returned on the
following line: u(outcome); .

The if(outcome) block handles the case in which the
fund was successful and met its goal. Handling this case is
easy. First, we transfer out the balance of the contract to the
receiver transfer(balance()).to(Receiver); . Then

 // Bystander views the outcome of the
fund.
 const [[], u] =
call(Bystander.getOutcome);
 // Returns outcome.
 u(outcome);

 // If the fund met or exceeded its goal,
pay all the money
 // in the contract to the Receiver.
 if(outcome) {
 // Pays the receiver.
 transfer(balance()).to(Receiver);
 commit();
 exit();
 }

 // If the contract is at this point that
must mean the fund
 // did not meet its goal and the funders
must receive their
 // currency back.
 assert(outcome == false);

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 19/37

we commit(); to put this change on-chain. And finally
exit(); exits the program.

If outcome is false (fund did not meet its goal), then the
if(outcome) block is not run and we need to handle

sending back all the donations to the individual funders.
assert(outcome == false); Is a check to ensure that if

the contract gets to this point, that the fund was not
successful.

Sending back funds to each address that donated is a bit
trickier. We can’t simply loop over the mapping of funders to
donations and return each donation back because each
transaction has a fee. Theoretically, we could have a single
function to pay back all funders, but who would pay the fees
to execute all these transactions? If I was a funder, I
wouldn’t want to have to pay for other funders to receive
their donations back. We couldn’t simply have the contract
pay for the transactions because all the funds in the contract
“belong” to their original funder so if we used the contract
balance to pay for transactions, not all funders would receive
their money back. And asking a receiver to deposit money
when they want to create a fund to cover paying back
funders would dis-incentivize people from using our
crowdfunding dapp. So the best option is to have each
funder call a function and pay for the transaction to receive
their original donation.

Insert the following after assert(outcome == false);
but before the closing }); :

6. Sending back donations if the fund DID NOT
meet its goal

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 20/37

 // ParallelReduce to allow for any
address that previously donated
 // to call a function to receive their
funds back.
 const [fundsRemaining,
numFundersRemaining] =
 parallelReduce([fundBal, numFunders
])
 .define(()=> {
 const checkPayMeBack = (who) => {
 // Check that the address
previously donated and is in the
 // mapping and set.
 check(!isNone(funders[who]),
"Funder exists in mapping");
 check(fundersSet.member(who),
"Funder exists in set");
 // Unwraps the UInt (amount
doated) of the address in
 // the mapping.
 const amount =
fromSome(funders[who], 0);
 check(amount != 0, "Amount
doesn't equal 0");
 // Checks there is enough currency
in the contract to
 // pay back funder.
 check(balance() >= amount);
 return () => {
 // Transfers back the amount the
funder previously
 // donated
 transfer(amount).to(who);
 // Removes the funder from the
set and sets their
 // mapping to 0.
 funders[who] = 0;
 fundersSet.remove(who);

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 21/37

 // Continue parallel reduce.
 return [fundsRemaining-amount,
numFunders-1];
 }
 }
 })
 .invariant(
 // Ensures the balance of the
contract is equal
 // to or greater than the amount of
funds remaining
 // in the contract.
 balance() >= fundsRemaining
)
 // Loop continues until either there
are no funds remaining
 // or all funders reclaimed their
funds.
 .while(fundsRemaining > 0 &&
numFundersRemaining > 0)
 // API for any address to call to
attempt to re-claim
 // their previous donation.
 .api(Funder.payMeBack,
 // Runs the checks in the
checkPayMeBack function
 // from the .define() block.
 () => {const _ =
checkPayMeBack(this); },
 // Pay expression is 0 because we
don't want
 // function callers to pay anything
for this.
 () => 0,
 (k) => {
 // Returns true for the payMeBack
API call,
 // indicating it was successful.
 k(true);

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 22/37

Again we will use a parallelReduce statement so we can loop
until a condition is met (there are no funds remaining or all
funders received their donation back). Similar to step 4
Funding period.

const [fundsRemaining, numFundersRemaining] =
parallelReduce([fundBal, numFunders]) starts off
the parallel reduce by using fundBal and numFunders
(returned from our parallel reduce in step 4 Funding period)
as the starting values for fundsRemaining and
numFundersRemaining respectively. In our parallel reduce

in step 4 we incremented these values each time someone
made an API call to donate to the fund. In this parallel
reduce we will instead decrement these values each time
someone makes an API call to receive back their previous
donation to the fund.

In our define block we create a function const
checkPayMeBack = (who) => {...} that performs some
checks to verify that an address has indeed donated an
amount to the fund and returns a function that transfers the
donation associated with the calling address.

const amount = fromSome(funders[who], 0);
Unwraps the UInt (amount dongasated) of the address in the
mapping. Entries in mappings are stored as options (called
maybe in Reach).

check(balance() >= amount); makes sure there is
enough money in the contract to pay back the funder. Always
evaluates to true. This indicates to the Reach compiler to
check for cases when this could be false. The Reach
compiler checks all combinations of all possible inputs to

 // Calls the inner function in
checkPayMeBack,
 // transfering the funds back to
the receiver.
 return checkPayMeBack(this)();
 }
)

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/consensus/#term_parallel%20reduce%20statement
https://docs.reach.sh/rsh/compute/#rsh_Maybe
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 23/37

ensure that there is never a case in which balance() >=
amount evaluates to false. Read more about check. We
include this here to check our logic and make sure the
program is behaving as we intend it to. It’s good practice to
scatter assert, check, and require statements throughout
your Reach program to have the compiler check edge cases
and ensure your program is working as intended.

The checkPayMeBack function returns a function that
transfers out a funders previous donation
transfer(amount).to(who); , removes the funder from

the set of funders and sets their amount donated mapping to
0 funders[who] = 0; fundersSet.remove(who); , and
finally continues the parallel reduce return [
fundsRemaining-amount, numFunders-1]; with
updated values of fundsRemaining and
numFundersRemaining .

Our loop invariant balance() >= fundsRemaining
ensures that there are enough funds in the contract to pay
back all of the fundsRemaining , which is the amount of
funds left to be claimed.

.while(fundsRemaining > 0 &&
numFundersRemaining > 0) Loop continues until either
there are no funds remaining or all funders have reclaimed
their funds.

.api(Funder.payMeBack, ...} API for any address to
call to attempt to re-claim their previous donation (if they
previously donated).

() => {const _ = checkPayMeBack(this); }, Runs
the checks in the checkPayMeBack function from the
.define() block. this is the address of the function caller.

() => 0, the pay expression is 0 because we don’t want
function callers to pay any amount to the contract for this.

(k) => {...} passes in k to be used as the API return
value.

Developer
Portal

Build Learn Discover Connect Challenges

https://docs.reach.sh/rsh/compute/#check
https://docs.reach.sh/rsh/compute/#rsh_assert
https://docs.reach.sh/rsh/compute/#check
https://docs.reach.sh/rsh/consensus/#rsh_require
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 24/37

k(true); returns true for the payMeBack API call,
indicating it was successful.

return checkPayMeBack(this)(); calls the function
returned from the checkPayMeBack function to transfer
out the donated amount to the caller, remove the address
from the set and mapping, and update the values of
fundsRemaining and numFundersRemaining .

You might notice that this parallel reduce doesn’t have the
.timeout() function that the parallel reduce we wrote in

step 4 does. That is because we don’t want to have a
deadline for funders to claim their donations. This parallel
reduce only exits when while(fundsRemaining > 0 &&
numFundersRemaining > 0) evaluates to false.

We’re almost done with index.rsh. There is just one loose
end to tie up.
Insert the following after the parallel reduce we just wrote
but before the closing }); :

 // This transfers out any remaining
balance to ensure
 // that no funds are permanently locked
in the contract.
 transfer(balance()).to(Receiver);
 commit();
 exit();

7. Finishing index.rsh

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 25/37

transfer(balance()).to(Receiver); Transfers out
any remaining balance to ensure that no funds are
permanently locked in the contract.

Then we commit(); to publish onto the blockchain and
finally exit(); our program. index.rsh is done!

Wait, why do we have to transfer out the remaining balance
of the contract? Shouldn’t the parallel reduce we wrote
above handle the distribution of all donations?

Since a contract is just an address on a blockchain, anyone
can send funds to it at any time. Any funds sent to this
contract’s address without using the donateToFund function
aren’t tracked and thus nobody can re-claim them during the
“pay me back” period if the fund doesn’t reach its goal. We
view sending funds in this manner as a free donation to the
receiver that isn’t expecting to be paid back. When this
transfer is reached, we have already exited the parallel
reduce to pay funders back, so we know that any remaining
balance in the contract doesn’t belong to any funder (i.e.
weren’t donated using donateToFund).

Now we will build out the front end. For this tutorial we are
just using the frontend for a terminal demo.
Replace the contents of index.mjs with the following:

import {loadStdlib} from '@reach-
sh/stdlib';
import * as backend from
'./build/index.main.mjs';

8. Start the frontend index.mjs

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 26/37

const stdlib = loadStdlib(process.env);

const runDemo = async (GOAL) => {

 const startingBalance =
stdlib.parseCurrency(100);

 // Set for testing purposes.
 const deadline = 50;
 const FUNDGOAL =
stdlib.parseCurrency(GOAL);

 // Helper function for holding the
balance of a participant
 const getBalance = async (who) =>
stdlib.parseCurrency(await
stdlib.balanceOf(who), 4,);

 // Prints to console the fund goal.
 console.log(`Fund goal is set to
${stdlib.formatCurrency(FUNDGOAL)}`);

 // Creates receiver and 2 funder test
accounts with the starting balance.
 const receiver = await
stdlib.newTestAccount(startingBalance);
 const users = await
stdlib.newTestAccounts(2,
startingBalance);

 // Prints initial balance of the 3
accounts
 for (const who of [receiver, ...users
]) {

console.warn(stdlib.formatAddress(who),
'has',
 stdlib.formatCurrency(await

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 27/37

We’re going to run a demo with two different goal amounts
(10 and 20). runDemo takes a goal amount and parses that
amount into the network currency to later pass as a fund
parameter.

const startingBalance =
stdlib.parseCurrency(100); defines a starting currency
of 100 network tokens.

const deadline = 50; is a very short deadline period for
demo purposes.

const getBalance = async (who) =>
stdlib.parseCurrency(await
stdlib.balanceOf(who), 4,); is a helper function for
getting the balance of a participant

const receiver = await
stdlib.newTestAccount(startingBalance); creates 1
receiver test account with a balance of startingBalance

const users = await stdlib.newTestAccounts(2,
startingBalance); creates 2 funder test account with a
balance of startingBalance . Since we’re creating 2 test
accounts, users is an array. Ex: access the first user with
users[0] .

The for loop prints initial balance of the 3 test accounts we
created.

Then we run the demo with a goal of 10, then again with a
goal of 20.

stdlib.balanceOf(who)));
 }
}

await runDemo(10);
await runDemo(20);

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 28/37

Add the following to the end of the runDemo function,
inside the closing } but after the for loop:

 // Receiver deploys the contract
 const ctcReceiver =
receiver.contract(backend);

 // Since the receiver doesn't need to do
anything after
 // deploying the contract and fund, we
can shut off their thread.
 // This can be done in Reach by using a
try/catch block
 // and throwing an arbitrary error.
 // Inspiration from Jay McCarthy's
session at Reach Summit 2022:
 // https://www.youtube.com/watch?
v=rhgEUFjiI2s&t=5158s
 try {
 await ctcReceiver.p.Receiver({
 receiverAddr:
receiver.networkAccount,
 deadline: deadline,
 goal: FUNDGOAL,
 ready: () => {
 // Defines the receivers ready()
function.
 console.log('The contract is
ready');
 // Arbitrary error.
 throw 42;
 },

9. Deploying contract from front-end

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 29/37

const ctcReceiver = receiver.contract(backend);
receiver deploys the contract.

Since the receiver doesn’t need to do anything after
deploying the contract and fund, we can shut off their
thread. This can be done in Reach by using a try/catch block
and throwing an arbitrary error. This is inspired by Reach
founder Jay McCarthy’s session at Reach Summit 2022 (This
video is a great resource check it out! McCarthy builds a
dapp in under 30 minutes while explaining his thought
process).

await ctcReceiver.p.Receiver({...}) deploys the
contract with the given fund parameters.

ready: () => {...} defines the logic of the receiver’s
ready() function that we call in the back end.

 });
 } catch (e) {
 if (e !== 42) {
 throw e;
 }
 }

Add the following to the end of the runDemo function,
inside the closing } but after the try/catch:

 // Helper function to connect and
address to the contract.
 const ctcWho = (whoi) =>

10. Helper functions

Developer
Portal

Build Learn Discover Connect Challenges

https://www.youtube.com/watch?v=rhgEUFjiI2s&t=5158s
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 30/37

users[whoi].contract(backend,
ctcReceiver.getInfo());

 // Helper function to connect an address
to the contract and call
 // the contracts donateToFund function.
 const donate = async (whoi, amount) => {
 const who = users[whoi];
 // Attatches the funder to the backend
that the receiver deployed.
 const ctc = ctcWho(whoi);
 // Calls the donateToFund function
from backend.
 console.log(stdlib.formatAddress(who),
`donated ${stdlib.formatCurrency(amount)}
to fund`);
 await
ctc.apis.Funder.donateToFund(amount);
 };

 // Helper function to call the
contract's timesUp function.
 const timesup = async () => {
 await
ctcReceiver.apis.Bystander.timesUp();
 console.log('Deadline reached');
 };

 // Helper function to call the
contract's getOutcome function
 // and publish it to the frontend.
 const getoutcome = async () => {
 const outcome = await
ctcReceiver.apis.Bystander.getOutcome();
 console.log(`Fund ${outcome? `did` :
`did not`} meet its goal`);
 return outcome;
 };

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 31/37

const ctcWho = (whoi) =>
users[whoi].contract(backend,
ctcReceiver.getInfo()); helper function to connect an
address to the contract. Addresses have to be connected to
the contract before calling functions.

const donate = async (whoi, amount) => {...}
helper function for a funder to call to donate to the contract
during the funding period. Takes an address and the amount
the funder wants to donate. await
ctc.apis.Funder.donateToFund(amount); Calls the
donateToFund function from backend.

const who = users[whoi]; and const ctc =
ctcWho(whoi); Attatches the funder (who) to the
backend that the receiver deployed.

const timesup = async () => {...}; is a helper
function for a bystander to call the contract’s timesUp
function.

const getoutcome = async () => {...}; is a helper
function for a bystander to call the contract’s getOutcome
function and publish it to the frontend.

 // Helper function to connect an address
to the contract and
 // call the contract's payMeBack
function.
 const paymeback = async (whoi) => {
 const who = users[whoi];
 // Attatches the funder to the backend
that the receiver deployed.
 const ctc = ctcWho(whoi);
 // Calls the donateToFund function
from backend.
 await ctc.apis.Funder.payMeBack();
 console.log(stdlib.formatAddress(who),
`got their funds back`);
 };

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 32/37

const paymeback = async (whoi) => {...}; is a
helper function for a funder call the contract’s payMeBack
function. await ctc.apis.Funder.payMeBack(); Calls
the donateToFund function from backend.

Add the following to the end of the runDemo function,
inside the closing } but after the paymeback function:

 // Test account user 0 donates 5
currency to fund.
 await donate(0,
stdlib.parseCurrency(5));

 // Test account user 1 donates 10
currency to fund.
 await donate(1,
stdlib.parseCurrency(10));

 // Waits for the fund to mature
 console.log(`Waiting for the fund to
reach the deadline`);
 await stdlib.wait(deadline);

 // Anyone calls the timesUp function to
indicate the
 // contract has reached the deadline.
 await timesup();

 // Gets the outcome of the fund.

11. Create the tests

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 33/37

await donate(0, stdlib.parseCurrency(5)); Test
account user 0 donates 5 currency to fund.

await donate(1, stdlib.parseCurrency(10)); Test
account user 1 donates 10 currency to fund.

await timesup(); A bystander calls the timesUp
function to indicate the contract has reached the deadline.

const outcome = await getoutcome(); Gets the
outcome of the fund. True if fund met its goal, false

 // True if fund met its goal, false
otherwise.
 const outcome = await getoutcome();

 // If the fund didn't meet its goal,
funders call
 // function to get their funds back.
 if(!outcome){
 // Test account user 0 requests their
donation back.
 await paymeback(0);
 // Test account user 1 requests their
donation back.
 await paymeback(1);
 }

 // Prints the final balances of all
accounts
 for (const who of [receiver, ...users
]) {

console.warn(stdlib.formatAddress(who),
'has',
 stdlib.formatCurrency(await
stdlib.balanceOf(who)));
 }

 console.log(`\n`);

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 34/37

otherwise.

If the fund didn’t meet it’s goal if(!outcome){...}
funders call function to get their funds back: await
paymeback(0); (Test account user 0 requests their
donation back) and await paymeback(1); (Test account
user 0 requests their donation back).

Finally, we print the final balances of all accounts.

Add the following after the runDemo function (outside the
closing }):

await runDemo(10); Runs the demo with a fund goal of
10. This will pass since user 0 donates 5 currency and user 1
donates 10 currency.

await runDemo(20); Runs the demo with a fund goal of
20. This will fail since only 15 currency is donated and 20 is
the goal. In this case, users call the paymeback function to
reclaim their funds.

// Runs the demo with a fund goal of 10.
await runDemo(10);
// Runs the demo with a fund goal of 20.
await runDemo(20);

12. Run the tests

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 35/37

Go ahead and run your crowdfunding dApp.
Output should look like this:

If you’re running in ALGO mode you might notice a ton of
warning messages. Don’t worry! These are warnings from
Reach that can’t be turned off and have to be logically
protected against (which we do). Explanation on Github

Other warning messages can be turned off by setting
REACH_NO_WARN in your reach config file:

Finished Dapp repo: https://github.com/JossDuff/reach-
crowdfund/
If this tutorial is helpful at all please leave a star :)

13. Done!Developer
Portal

Build Learn Discover Connect Challenges

https://github.com/JossDuff/reach-crowdfund/issues/1
https://github.com/JossDuff/reach-crowdfund/
https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 36/37

Some ideas that you can implement to improve your Reach
and dapp building skills!

Allows funders to donate multiple times.
Create more parameters for each fund (name, image,
description, link, etc) and display them.
Allow the receiver to specify an address to send all the funds
to if the goal is reached.
Send to the receiver a list of all addresses that donated to
their fund.
Create a website frontend.
Allow wallet connection.
Refactor. This is just one solution, but it’s definitely not the
best solution. Improve it or write a better solution!

14. Improve your skills and test your
knowledge

Developer
Portal

Build Learn Discover Connect Challenges

https://developer.algorand.org/

12/30/22, 12:07 PM Crowdfunding Dapp with Reach | Algorand Developer Portal

https://developer.algorand.org/tutorials/crowdfunding-dapp-with-reach/#1-setup 37/37

© 2022 Algorand. All rights reserved.

discord forum

Discover

Documentation

Developer Blog

Ecosystem Projects

MainNet Metrics

Partner Sites

Algorand

Algorand Foundation

Algorand Wallet

Support Contact Us Terms of Use Privacy Policy

Stay up to date*

Your email address

English

Developer
Portal

Build Learn Discover Connect Challenges

https://discord.gg/84AActu3at
https://forum.algorand.org/
https://www.youtube.com/algorand/
https://twitter.com/Algorand/
https://www.facebook.com/algorand/
https://t.me/algorand/
https://www.linkedin.com/company/algorand/
https://www.reddit.com/r/AlgorandOfficial/
https://github.com/algorand/
https://developer.algorand.org/docs/
https://developer.algorand.org/blog/
https://developer.algorand.org/ecosystem-projects/
https://metrics.algorand.org/
https://www.algorand.com/
https://algorand.foundation/
https://algorandwallet.com/
https://developer.algorand.org/pages/support/
https://developer.algorand.org/pages/contact-us/
https://developer.algorand.org/pages/terms-of-use/
https://developer.algorand.org/pages/privacy-policy/
https://developer.algorand.org/

