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Introduction: fractal curves in random geometries

Let Bt be a standard complex Brownian motion in the unit disk D stopped at time T when reaches the
boundary ˆD. This induces the random measure µ on D,

µ(V ) =
⁄ T

0

1{Bt œ V } dt.

Suppose f : D æ D is a conformal transformation. Then B̂t = f(B‡(t)) is a Brownian motion in D
provided we choose the random time change ‡(t) such that

t ≠ s =
⁄ ‡(t)

‡(s)

|f Õ(Br)|2 dr.

This gives an occupation measure µ̂ on D.

Conformal covariance:
µ̂ = |f Õ|2 (f ¶ µ).

The exponent 2 indicates that Brownian motion paths are 2-dimensional paths.
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We could look at the paths on D but multiply the intrisic metric on the D by |f Õ|.
Many models in theoretical physics involve random curves (configurations) and random metrics
(geometries). Once often averages (or more generally integrates) over both.
Sometimes the curve and the metric are independent but the interesting quantities come from the
integrated quantities.
One may hope to understand the random curves by understanding how they look in random geometries.
(However, this may not always work!)
Even if not, the combined random curve/geometry combination can be the underpinning of deep models
in theoretical physics (as well as being beautiful mathematics!)

This tutorial

Write a conformal transformation f = eu+iv . Then u is a “random harmonic function” and |f | is the
“exponential of a random harmonic function”.
We will consider the case where u is a Gaussian free field (GFF).
The random curves will be Schramm-Loewner evolution (SLE).
We start by introducing the GFF and the idea of exploration of the field.
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Discrete Gaussian Free Field (GFF)

There is a GFF associated to any transient Markov chain (and even more general than that) but we will
restrict ourselves to simple random walk in Z

2 in A $ Z
2 killed upon leaving the set.

Sj simple random walk in A. T is the first time k with

Sk œ ˆA := {w œ Z
2 : dist(w, A) = 1}.

GA is the Green’s function

GA(z, w) = E
z

C
T ≠1ÿ

j=0

1{Sj = w}

D
.

Let Cn = {z œ Z
2 : |z| < en}.
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Definition
The Dirichlet Gaussian free field on A is a centered (mean zero) multivariate normal random variable indexed
by A, Z = {Zx : x œ A}, with covariance matrix GA(z, w).

E[Zz ] = 0, E[Zz Zw] = GA(z, w).

We describe a construction using an ordering of A = {x1, x2, . . .} for exploring the field. The
construction depends on the ordering but the distribution of the field does not.
We start with a collection of independent standard normal random variables {Nx : x œ A}. We view the
{Nx} as white noise.
Let Aj = A \ {x1, . . . , xj≠1}.
Let HAj (z, w) be the Poisson kernel, that is, the probability that a random walker starting at z leaves
Aj at w. If z ”œ Aj , then HAj (z, z) = 1.
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For ease write Zj for Zxj .

Define Zk recursively,
Z1 =


GA(x1, x1) N1,

Zk = Zxk
=

k≠1ÿ

j=1

HAk
(xk, xj) Zj +


GAk

(xk, xk) Nk.

k≠1ÿ

j=1

HAk
(xk, xj) Zj = Expected value of Zk given Z1, . . . , Zk≠1


GAk

(xk, xk) Nk = additional independent randomness

There is an equivalent form which is more like the continuous expression that we will give later

Zk =
kÿ

j=1

HAj (xk, xj)


GAj (xj , xj) Nj .

Exercise to see that these have the correct distribution.
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If V µ A, then the distribution of {Zx : x œ A \ V } given {Zx : x œ V } is that of

Zy = v(y) + Z̃y

where v(y) is the harmonic function with boundary values {Zx : z œ A \ V } and Z̃y is an independent
Dirichlet GFF in A \ V .

The field {v(y) : y œ A \ V } is the harmonic extension of the field on V to A \ V .

We sometimes call Z̃y the residual field.
The harmonic function

v(y), y œ A \ V

depends only on the values {Zx : z œ ˆ[A \ V ]}. This is a Markovian field property.

Greg Lawler Gaussian Free Field (GFF) and Related Topics March 16, 2022 7 / 60



Example: A = Cn = {z œ Z
2 : |z| < en}

GA(0, 0) = 2
fi

n + k0 + O(e≠n),

for a known constant k0.
If z, w œ D with z ”= w,

fi

2
GA(zen, wen) = g(z, w) + O(e≠un).

where g(·, ·) denotes the Brownian motion Green’s function in D normalized so that

g(z, w) = ≠ log |z ≠ w| + O(1), z æ w.

More precisely, g(0, z) = ≠ log |z| and g is conformally invariant.
The continuous Gaussian free field is defined formally by

h(z) = lim
næŒ

Ò
fi

2
Z(n)

zen

where Z(n) is the GFF on Cn.
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(Brownian motion) Green’s function in C = R
2

D µ C, domain (open, connected subset) containing 0. We will restrict to D = C \ (K1 fi · · · fi Kn)
where 1 Æ n < Œ; K1, . . . , Kn are the connected components of Ĉ \ D; and each Kj contains more
than one point.
Bt complex Brownian motion,

T = TD = inf{t : Bt ”œ D}, ‡s = inf
)

t : |Bt| Æ e≠s
*

.

GD(z) := GD(z, 0) = lim
sæŒ

s P{‡s < T }.

More generally,
GD(z, w) = GD≠w(z ≠ w, 0).

If {An} is a sequence of finite subsets of Z2 with n≠1An “converging” to D, then
fi

2
GAn (nz, nz) æ GD(z, w).
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The conformal radius rD(z) = cradD(z) is defined by

GD(z, w) = ≠ log |z ≠ w| + log rD(z) + o(1), w æ z.

If f : D æ f(D) is a conformal transformation,

Gf(D)(f(z), f(w)) = GD(z, w), rf(D)(f(z)) = |f Õ(z)| rD(z).

In particular, if D is simply connected and f : D æ D is a conformal transformation with f(0) = z, then
rD(z) = |f Õ(0)|.
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We will now use G for the Brownian motion Green’s function on the unit disk D.

Definition
The Gaussian free field (GFF) on D is a centered Gaussian process {hf } indexed by functions f on D with
covariance function

E[hf hg] = G(f, g) =
⁄

D

⁄

D

f(z) g(w) G(z, w) dA(z)dA(w).

We write formally

h(f) =
⁄

f(z) h(z) dA(z).
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Can define on a countable collection of simple functions (for example step functions with rational values
on dyadic squares) and then close in the real Hilbert space with inner product

Èf, gÍ =
⁄ ⁄

f(z) g(w) G(z, w) dA(z)dA(w).

The closure includes measures fl that satisfy
⁄ ⁄

G(z, w)ÎflÎ(dz) ÎflÎ(dw) < Œ.

This defines random variables in L2 sense, but it is useful to have a large collection of random variables
defined up to one event of probability zero.
For example, one can define Brownian motion {Xt : t Ø 0} as a Gaussian process with covariance
E[XsXt] = s · t, but one generally chooses a version of this such that with probability one Xt is a
continuous function of t.
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Let Cs(z) denote the circle of radius e≠s centered at z.
If z œ D with dist(z, ˆD) > e≠s define the circle average of h on the circle of radius e≠s about z
formally by

�s(z) = “mean value of h on Cs(z)” = h(µ),

where µ is the uniform probability measure on Cs(z). Using the fact that G(z, w) and
G(z, w) + log |z ≠ w| are harmonic in each variable, we see that

E

#
�s(z)2

$
= mean value of G(w̃, w) on Cs(z) ◊ Cs(z)

= mean value of G(z, w) on Cs(z)
= s + [mean value of (G(z, w) + log |z ≠ w|) on Cs(z)]
= s + log rD(z)

In particular, if D = D, E[�s(0)2] = s.
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A version of the Dirichlet GFF on D can be found such that with probability one the circle averages �s(z)
are continuous in s and z. Moreover, sharp estimates can be given for the modulus of continuity.
Proof idea: define it for �s(z) over rationals and then proof a result on uniform continuity. Define �s(z)
for all s, z by continuity.
This allows us to write quantities such as

⁄ t

0

�s(z) ds,

⁄

V

�s(z) dA(z)

We can similarly define the Dirichlet Gaussian field on any domain D with finite Green’s function
GD(z, w). In this case,

E

#
�s(z)2

$
= s + log rD(z).
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Markovian property

Let h be a Dirichlet Gaussian free field on a domain D and suppose z œ D with dist(z, ˆD) > e≠s.

Let D = Ds(z) be the open disk of radius e≠s about z with boundary Cs(z).
On D we can write

h = v + h̃

where
v(z) = expected value of h(z) given h on D \ D = h(hmD,z)

h̃ = residual field
where hmD,z denotes the harmonic measure (hitting measure of boundary by Brownian motion) starting
at z and h̃ is an independent Dirichlet GFF on D.
A “boundary condition” for a GFF on D is a harmonic function on D although the function may not be
well defined on the boundary.
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If t > s,
�t(z) = �s(z) + �̃t(z), �̃t(z) := �t(z) ≠ �s(z).

These are independent centered normals and E

#
�̃t(z)2

$
= t ≠ s.

This uses the fact that the average of hmD,z where z lies on the circle Ct(z) is the uniform measure on
Cs(z).
Another way of stating this is that if

Xt = �t(z),

then Xt is a standard Brownian motion.
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Conformal invariance

Suppose f : D æ f(D) is a conformal transformation and h is a Dirichlet GFF on D. We will define
f ¶ h (more precisely written as h ¶ f≠1) to be the field on f(D) given as follows.
Suppose µ is a measure on f(D). Define ‹ on D by ‹(K) = µ[f(K)]. Then

(f ¶ h)(µ) = h(‹).

Fact: f ¶ h is a Dirichlet Gaussian field on f(D).
Not di�cult to check using the fact that the Green’s function is conformally invariant

GD(z, w) = Gf(D)(f(z), f(w)).
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Exploration of the GFF

We will consider the GFF in the upper half plane H with Green’s function

G(z, w) = GH(z, w) = ≠ log |z ≠ w| + log |z ≠ w|.

Let “(t) be a simple curve starting at the origin taking values in H.
We will explore the GFF by traversing the curve “ and seeing the values of the field on “.

In analogy with discrete we want to write formally that the expected value of the field at z given the field
on “t := “(0, t] is ⁄ t

0

HH\“s (z, “(s)) (value of N at “(s)) ds,

where N is some “white noise”.
Make this precise using the Loewner di�erential equation and (Itô) stochastic integrals
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Suppose “ : [0, Œ) æ H with “(0) = 0. We write “t for “[0, t].
Let a(t) = hcap[“t] be the half-plane capacity. This can be defined in several ways. For example, if Bs

is a complex Brownian motion and · = ·t = min{s : Bs œ “t fi R}, then

hcap[“t] = lim
yæŒ

y E
iy [Im(B· )] .

a(t) increases with t. We will assume that it is strictly increasing (non-crossing condition). We say that “
is parametrized by capacity if a(t) = at for some a > 0; a = 2 is most common choice.
Let Dt be the unbounded component of H \ “t and let gt : Dt æ H be the conformal transformation
satisfying gt(z) = z + o(1) as z æ Œ. Then the expansion is given by

gt(z) = z + a(t)
z

+ O(|z|≠2), z æ Œ.

Ut

g
t(t)

0

γ
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Loewner di�erential equation: with capacity parametrization, gt satisfies

ġt(z) = a

gt(z) ≠ Ut
= a

Zt(z)
= Rt(z) ≠ i Ht(z), g0(z) = z. (1)

where Ut = gt(“(t)),

Zt(z) = gt(z) ≠ Ut,
1

Zt(z)
=: Rt(z) ≠ i Ht(z).

We will explore the GFF by traversing the curve “ and seeing the values of the field on “.
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Heuristic picture

Note that
Ht(z) = Yt(z)

|Zt(z)|2

is (a multiple of) the Poisson kernel in H.
In a small time interval t, we view the field on “t with hcap[“t] = at. From the perspective of a point
away from the origin, this is a Gaussian random variable Y with variance 2at.
This contribute a factor of H0(z) Y to the value of field h(z). The remainder of h(z) comes from the
values of the field in Dt.
The Green’s function in Dt between z and w is equal to the original Green’s function minus

2a

⁄ t

0

Hs(z) Hs(w) ds.

This is the measure of paths from z to w in H that go through “t and hence are not in Dt.
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On Dt we will write the field given its value on “t as

h(z) = vt(z) + ht(z),

where vt is the conditional expectation given the values on “t and ht is an independent Dirichlet GFF on
Dt.
Let Wt be a standard Brownian motion (this is the analogue of the independent normals {Nx} from the
discrete field)

vt(z) =
⁄ t

0

Ô
2a Hs(z) dWs.

Compare to discrete: Zk =
kÿ

j=1

HAj (xk, xj)


GAj (xj , xj) Nj .

Using Loewner equation, we can see that

GDt (z, w) = G(Zt(z), Zt(w)) = G(z, w) ≠ 2a

⁄ t

0

Hs(z) Hs(w) ds.

log rDt (z, z) = log rH(z, z) ≠ 2a

⁄ t

0

Hs(z)2 ds
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Theorem
Suppose “ is a noncrossing curve parametrized so that hcap[“t] = at and let D = H \ “. For z œ D, let

v(z) =
Ô

2a

⁄ Œ

0

Hs(z) dWs.

Let h̃ denote an independent Dirichlet GFF in D. Then
v + h̃

is a Dirichlet GFF in H.

We can also choose “ to be a random curve independent of Wt

We can also choose “ that depends on the field — this will lead to an important coupling result.
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Schramm-Loewner evolution (SLEŸ)

Probability distribution on simple (or more generally “non-crossing”) curves from 0 to Œ in H with the
conformal Markov property.
Given an initial segment “t, the distribution of the remaining curve after mapping back to H is the same
as the original distribution.
If we parametrize by half-plane capacity, this determines the distribution up to an additive constant.
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Schramm-Loewner evolution (SLEŸ)

Solution of Loewner equation with Ut a standard Brownian motion and a = 2/Ÿ.
If Zt(z) = gt(z) ≠ Ut, then

dZt(z) = a

Zt(z)
dt ≠ dUt.

For Ÿ Æ 4, with probability one we get a simple curve with fractal dimension d = 1 + Ÿ
8 .

For 4 < Ÿ < 8, the curve has self-intersections but still has dimension d = 1 + Ÿ
8 .

If Ÿ Ø 8, the curve is space filling
While SLE for all values of Ÿ is interesting, we will consider Ÿ Æ 4 primarily.
We can view field on “ — we can choose Wt to be independent of Ut or we can choose Wt = Ut.
The first case we will consider later. Right now we will consider the latter.
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Coupling of SLE with GFF

dZt(z) = a

Zt(z)
dt ≠ dUt = a [Rt(z) dt ≠ dUt + i Ht(z) dt] .

We can couple a GFF with an SLE by choosing the same Brownian motion for the field and the curve,
that is, Ut = Wt.
Heuristically, we take a small slit with hcap = a‘; view the GFF on this slit, and then use the value of the
GFF; on the slit to determine the value of U‘.

Mathematically, we find the appropriate martingales using the Loewner equation and Itô’s formula.
If �t(z) = arg Zt(z),

d�t(z) = (1 ≠ 2a) Rt(z) Ht(z) dt + Ht(z) dWt.

In particular, �t(z) is a martingale for Ÿ = 4 but not for other values of Ÿ.
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Let Ât(z) = arg gÕ
t(z) = Im[log gÕ

t(z)] (which is harmonic in z) and

Mt(z) = �t(z) + 2a ≠ 1
2a

Ât(z)

then Mt(z) is a martingale satisfying

dMt(z) = Ht(z) dWt.

More generally, if fl is a measure, we set

Mt(fl) =
⁄

Mt(z) fl(dz)

and see that Mt(fl) is a martingale satisfying

dMt(fl) = Ht(fl) dWt, where Ht(fl) =
⁄

Ht(z) fl(dz).

This gives

dÈMt(fl)Ít =
⁄ ⁄

Ht(z) Ht(w) fl(dz) fl(dw) dt = ≠(2a)≠1 ˆt GDt (fl).
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Theorem
Let “ be an SLEŸ path in H, Ÿ < 8. Let D = H \ “ and on D define

vŒ(z) =
Ô

2a MŒ(z) =
Ô

2a

Ë
�Œ(z) + 2a ≠ 1

2a
ÂŒ(z)

È

(note that �Œ(z) œ {0, fi}) Let h̃ be a Dirichlet GFF on D conditionally independent of “. Then
h := vŒ + h̃ is a GFF on H with boundary condition v0(z) =

Ô
2a arg(z).

This is nicest when Ÿ = 4.

Theorem
Let “ be an SLE4 path in H. Let D = H \ “ and on D define

vŒ(z) = MŒ(z) =
Ó

0 right side of “
fi left side of “

Let h̃ be a Dirichlet GFF on D conditionally independent of “. Then h := vŒ + h̃ is a GFF on H with
boundary condition 0 on (0, Œ) and fi on (≠Œ, 0).
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Basic idea of proof

If we can write a random variable Y as

Y =
⁄ Œ

0

As dBs,

⁄ Œ

0

A2
s ds = ‡2,

where ‡2 is a constant, then Y ≥ N(0, ‡2). It is not required that each As be a constant.
Similarly, if

Y =
⁄ Œ

0

As dBs,

⁄ Œ

0

A2
s ds Æ ‡2,

then Y may not be normal but if given Y we add Z, a conditionally independent centered Gaussian with
variance

‡2 ≠

⁄ Œ

0

A2
s ds

then Y + Z ≥ N(0, ‡2).
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Full plane GFF

Gaussian field h defined up to a random constant, that is, if Y is a real-valued random variable that may
depend on h, then h and h + Y are the same field.
Field indexed by signed measures fl with compact support and fl(C) = 0.
h(fl) is a centered Gaussian random variable with variance

⁄ ⁄
G(z, w) fl(dz) fl(dw), G(z, w) := ≠ log |z ≠ w|.

(h + Y )(fl) = h(fl) +
⁄

Y fl(dz) = h(fl).

The choice of G is not unique even if we require symmetry and harmonic in each variable. For example,
we could choose

G(z, w) = ≠ log |z ≠ w| + „(z) + „(w),

where „ is harmonic since
⁄ ⁄

„(z) fl(dz) fl(dw) =
⁄

„(z)

5⁄
fl(dw)

6
fl(dz) = 0.
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Construction of full plane GFF

Idea: ”get it started at some point (0 or Œ)” and then use Dirichlet GFF to define the rest.
We will do one way by defining the field on the real line first and then extending. We will explore on the
real line from Œ to ≠Œ.
Let Dt = C \ [t, Œ) and for z œ D, formally let vt(z) be the expected value of the field at z given the
field on [t, Œ).

While vt(z) is not well defined, we will be able to define vt(fl) if fl(C) = 0.
Then for each t we can write

h = h̃t + vt

where h̃t is a Dirichlet GFF on Dt. In particular, h = h̃ + vŒ where h̃ is a Dirichlet GFF on C \ R.
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Let

u(z) = u0(z) = HH(
Ô

z) = sin(◊z/2)
|z|1/2 ,

ut(z) = u(z + t), ut(fl) =
⁄

ut(z) fl(dz).

We think of ut(z) as the value of the Poisson kernel HD≠t (z, ≠t) even though t is not a smooth point
on ˆD≠t.

vt(z) =
⁄ t

≠Œ

ut(z) dWt, vt(fl) =
⁄ t

≠Œ

ut(fl) dWt.

For fixed z, fl, with fl(C) = 0, as t æ Œ,

u≠t(z) = O(|t|≠1/2), ut(z) = O(t≠3/2),

u≠t(fl) = O(|t|≠3/2), ut(fl) = O(t≠3/2)
In particular vŒ(fl) is a centered Gaussian random variable with variance

⁄ Œ

≠Œ

ut(fl)2 dt < Œ
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The full plane GFF written as h = v + h̃ contains two independent GFFs on H:

h+(z) = h̃(z), h≠(z) = h̃(z).

Let
�̃(z) = h(z) ≠ h(z)

Ô
2

= h+(z) ≠ h≠(z)
Ô

2
,

� = h(z) + h(z)
Ô

2
= h+ + h≠Ô

2
+

Ô
2 v.

�̃ is a Dirichlet GFF on H. We call � a Neumann GFF on H. �̃(fl) is defined for measures with
fl(C) = 0. We can write � as two independent pieces

� =
#

expected value given
Ô

2 h on R

$
+ [Dirichlet GFF on H]

The first is defined only for measures with fl(C) = 0.

Greg Lawler Gaussian Free Field (GFF) and Related Topics March 16, 2022 33 / 60



If fl is a measure with compact support in H with fl(C) = 0, then �(fl) is a centered Gaussian random
variable with variance ⁄ ⁄

G̃H(z, w) fl(dz) fl(dw)

where
G̃H(z, w) = ≠ log |z ≠ w| ≠ log |z ≠ w|.

This can be compared to
GH(z, w) = ≠ log |z ≠ w| + log |z ≠ w|.

As for the full plane GFF, the Neumann Green’s function is not unique. For example, we could choose

G̃H(z, w) = ≠ log |z ≠ w| ≠ log |z ≠ w| + „(z) + „(w)

where „ is harmonic in H.
The Neumann GFF is conformally invariant.
I will discuss this more in my Saturday lecture.
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Part II: Random Fractal Measures

Simply connected domain D and distinct boundary points z, w œ D.
“: chordal SLEŸ (Ÿ < 8) path from z to w in D. We write d = 1 + Ÿ

8 for the corresponding fractal
dimension.
h Dirichlet GFF in D

d-dimensional Minkowski content: fractal measure given by “

Liouville quantum gravity (LQG): fractal measure with “density” e
Ô

Ÿ h (area measure) or e(Ô
Ÿ/2) h

(length measure).
Quantum length: A combination of Minkowski content and LQ length measure.

Notes on parameters

It is standard to use “ œ (0, 2) for the parameter
Ô

Ÿ. We choose not to do this since we use “ for our
SLEŸ paths.
Other parameters are Q = Q“ and the central charge c

Q = QŸ =
Ô

Ÿ

2
+ 2

Ô
Ÿ

, c = cŸ = (6 ≠ Ÿ)(3Ÿ ≠ 8)
2Ÿ

.
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Construction of fractal measures

If n is an integer, we call S a dyadic square at level n if it is of the form

S =
Ó

x + iy : j

2n
Æ x <

j + 1
2n

,
k

2n
Æ y <

k

2n

Ô

for some integers j, k, n.
We choose half-open, half-closed squares so that the squares of a fixed level partition the entire plane.

Let Qn = Qn(D) denote the set of dyadic squares S at level n with S µ D and Q = Q(D) = finQn.
A function µ : Q æ [0, Œ) is called a (dyadic) field if it is finitely additive, that is, whenever S is written
as a finite disjoint union, S = S1 fi · · · fi Sk with S1, . . . , Sk œ Q, then µ(S) = µ(S1) + · · · + µ(Sk).

If µ is a Borel measure on D, then {µ(S) : S œ Q} is a field. However, fields can be more general than
those given by measures. For example, if h is a discrete GFF on D, then {h(S) : S œ Q} is a field.
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If S œ Qn and m Ø n, let ˆmS be the union of all SÕ œ Qm with dist(SÕ, ˆS) = 0.
We define

µ(ˆS) = lim
mæŒ

µ[ˆm(S)].

The limit exists since µ[ˆm(S)] decreases with (large enough) m.
Let M = M(D) denote the set of positive dyadic fields in D such that µ(ˆS) = 0 for every S œ Q.
Let Qú denote the set of finite unions of elements of Q.
µ extends to an additive function on Qú such that µ(ˆS) = 0 for every S œ Qú.
A (positive) Borel measure µ on D with µ(S) < Œ and µ(ˆS) = 0 for all S œ Q gives an element of
M. Indeed, this is a bijection.
Standard measure theory shows that if µ œ M, then µ can be extended uniquely to a Borel measure on
D.
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To construct µ, we need to show that the limit

µ(S) = lim
næŒ

µn(S) (2)

exists for each S œ Q and that the limit satisfies µ(ˆS) = 0 for each S.
Since Q is countable we need only show an almost sure limit for each S.
We will write

µn(S) =
⁄

S

Fn(z) dA(z)

where Fn(z) is a random (depending on “ and/or h) measurable function.
In (2) we have a limit along a sequence. More generally we will consider

µt(S) =
⁄

S

Ft(z) dA(z), t œ R

and take the limit
µ(S) = lim

tæŒ
µt(S).
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Liouville Quantum Gravity (Area Measure)
(Roughly speaking, µ(dz) = e

Ô
Ÿ h(z) dA(z))

Fix 0 < Ÿ < 4 and S œ Q
Recall: if dist(S, ˆD) > e≠t and z œ S, �t(z) is the circle average of h at radius e≠t about z.
�t(z) is a centered Gaussian random variable with variance t + log rD(z).

E

#
exp{

Ô
Ÿ �t(z)}

$
= R(z) eŸ t/2, R(z) = rD(z)

Ô
Ÿ/2.

We set
Ft(z) = e≠Ÿ t/2 exp{

Ô
Ÿ �t(z)}, E[Ft(z)] = R(z).

µt(S) =
⁄

S

Ft(z) dA(z), E[µt(S)] =
⁄

S

R(z) dA(z).
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Straightforward calculation for large deviations of normal distributions

Let N be a standard normal random variable and ⁄ > 0.

moment generating function E

#
e⁄N

$
= e⁄2/2. (3)

If we tilt the probability measure P by e≠⁄2/2 e⁄N , then in the new probability measure P
ú, N has the

distribution of a normal random variable with mean ⁄ and variance 1.

P
ú{a Æ N ≠ ⁄ Æ b} =

⁄ b

a

1
Ô

2fi
e≠x2/2 dx.

or equivalently,

e≠⁄2/2
E

#
e⁄N ; ⁄ + a Æ N Æ ⁄ + b

$
=

⁄ b

a

1
Ô

2fi
e≠x2/2 dx.

Roughly speaking, the expectation in (3) is carried on the event that N = ⁄ + O(1) and the probability
of this event is of order e≠⁄2/2.
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Back of the envelope calculation

The integral

µt(S) =
⁄

S

Ft(z) dA(z)

is carried on disks of radius e≠t where the circle average �t(z) equals about
Ô

Ÿ t.

The probability of such a disk is of order e≠(Ÿ/2)t.
The number of disks of radius e≠t needed to cover S is O(e2t). The fractal dimension of the set of
points carrying the integral is 2 ≠ Ÿ

2 .
We choose Ÿ < 4 so that this dimension is positive.

Greg Lawler Gaussian Free Field (GFF) and Related Topics March 16, 2022 41 / 60



Fix a dyadic square S and let Yt = µt(S).
It su�ces to show that there exist c, u such that for 0 Æ t Æ 1,

ÎYn+t ≠ YnÎ1 = E [|Yn+t ≠ Yn|] Æ c e≠un

It follows that there exists an L1 limit Y along every subsequence and

ÎYt ≠ YŒÎ1 Æ cÕe≠ut, P{|Yt ≠ YŒ| Ø e≠ut/2} Æ cÕ e≠ut/2.

It follows that for every arithmetic sequence we get convergence with probability one.
To get that with probability one

lim
tæŒ

Yt = Y

we use these estimates and the estimates on the modulus of continuity of the circle averages.
Try L2 limits first — these are easiest for sums or integrals of random variables.
If L2 norms do not exists, try truncating the random variables to remove unlikely large values that have a
negligible e�ect on E[Y ] but a nonnegligible e�ect on E[Y 2].
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For ease, let t = 1 and write

�n(z) = Fn+1(z) ≠ Fn(z)

= Fn(z)
Ë

exp
Ó

Ô
Ÿ Jn(z) ≠

Ÿ

2

Ô
≠ 1

È
,

where Jn(z) = �n+1(z) ≠ �n(z).
Recall that Jn(z) is a standard normal random variable independent of Fz

n, the ‡-algebra associated to
the values of the field in {’ : |z ≠ ’| Ø e≠n}.
In particular,

E

#
�n(z) | Fz

n

$
= E [�n(z)] = 0.

Note that

Yn+1 ≠ Yn =
⁄

S

�n(z) dA(z),

E[(Yn+1 ≠ Yn)2] =
⁄

S

⁄

S

E [�n(z) �n(w)] dA(z) dA(w).
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If |z ≠ w| Ø 2e≠n, then �n(w) is Fz
n-measurable. Hence

E [�n(z) �n(w)] = E

#
E

!
�n(z) �n(w) | Fz

n

"$

= E

#
�n(w) E

!
�n(z) | Fz

n

"$
= 0

For |z ≠ w| Æ 2e≠n we use Cauchy-Schwartz,

E [�n(z) �n(w)] Æ


E [�n(z)2] E [�n(w)2] Æ —n := sup
zœS

E[�n(z)2].

The measure of the set of (z, w) with |z ≠ w| Æ 2e≠n is O(e≠2n) and hence

E[(Yn+1 ≠ Yn)2] Æ c e≠2n —n.

On the next slide we will show that —n ® eŸn. Hence we get

E[(Yn+1 ≠ Yn)2] Æ c e(Ÿ≠2)n

which gives our estimate for Ÿ < 2.
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E

#
�n(z)2

$
= E

Ë
Fn(z)2

1
exp

Ó
Ô

Ÿ Jn(z) ≠
Ÿ

2

Ô
≠ 1

22È

= E

#
Fn(z)2

$
E

Ë1
exp

Ó
Ô

Ÿ Jn(z) ≠
Ÿ

2

Ô
≠ 1

22È

® E

#
Fn(z)2

$

® e≠Ÿn
E[exp{2

Ô
Ÿ�n(z)}] ® eŸn

The last expectation concentrates on z with �n(z) = 2Ô
Ÿn + O(1). But our measure should

concentrate on z with �n(z) = Ô
Ÿn + O(1)

We replace Fn(z) with
F̃n(z) = Fn(z) 1{�n(z) Æ (

Ô
Ÿ + ”)n}.

Ỹn(z) =
⁄

F̃n(z) dA(z).
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E[exp{2
Ô

Ÿ�n(z)}; �n(z) Æ (
Ô

Ÿ + ”)n]
® exp{2

Ô
Ÿ(

Ô
Ÿ + ”)n} P{�n(z) Ø (

Ô
Ÿ + ”)n}

® exp
Ó

n

Ë
2

Ô
Ÿ(

Ô
Ÿ + ”) ≠

(Ô
Ÿ + ”)2

2

ÈÔ

Æ exp
Ó

n( 3Ÿ

2
+ ”

Ô
Ÿ)

Ô

We thus get

E

#
�̃n(z)2

$
Æ e≠Ÿn exp

Ó
n

1
3Ÿ

2
+ ”

Ô
Ÿ

2Ô

= exp
Ó

n

1
Ÿ

2
+ ”

Ô
Ÿ

2Ô
.

For each Ÿ < 4, we can find ” > 0 such that the last quantity equals e(2≠‘)n for some ‘ > 0 giving

E

#
|Ỹn+1 ≠ Ỹn|

$
Æ

Ò
E

#
(Ỹn+1 ≠ Ỹn)2

$
Æ c e≠‘n/2.
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Straightforward estimate using normal random variables gives

E[Fn(z); �n(z) Ø (
Ô

Ÿ + ”)n]

® e≠Ÿn/2
E[exp{

Ô
Ÿ �n(z)}; �n Ø (

Ô
Ÿ + ”)n]

Æ exp
Ó

≠n

1
Ÿn

2
+ ” (

Ô
Ÿ + ”)

2Ô
E

#
exp{(

Ô
Ÿ + ”) �n(z)}

$

= exp
Ó

≠n

1
Ÿn

2
+ ” (

Ô
Ÿ + ”)

2Ô
exp

Ó
(Ô

Ÿ + ”)2 n

2

Ô

= e≠”n/2

Therefore,

E

#
Yn ≠ Ỹn

$
=

⁄
E[Fn(z); �n(z) Ø (

Ô
Ÿ + ”)n] dA(z) Æ c e≠”n/2.

|Yn+1 ≠ Yn| Æ |Ỹn+1 ≠ Ỹn| + |Yn ≠ Ỹn| + |Yn+1 ≠ Ỹn+1|.

E[|Yn+1 ≠ Yn|] Æ c e≠(‘·”)n/2.
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Conformal covariance

Fact
f : D æ D̃ be a conformal transformation; h a Dirichlet GFF in D and h̃ = f ¶ h the corresponding GFF in
D̃. Let µ, µ̃ be the LQG measures associated to h, h̃. Then,

µ̃ = |f Õ|2+ Ÿ
2 (f ¶ µ).

If z œ D with |f Õ(z)| = es, we have

Ft(z) = e≠Ÿt/2 e�t(z) ≥ e≠Ÿt/2 e�̃t≠s(f(z)) ≥ |f Õ(z)|≠ Ÿ
2 F̃t≠s(f(z)).

µ̃(F (V )) ≥

⁄

f(V )

F̃t≠s(w) dA(w)

≥

⁄

V

F̃t≠s(f(z)) |f Õ(z)|2 dA(z)

≥

⁄

V

Ft(z) |f Õ(z)|2+ Ÿ
2 dA(z)
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Minkowski content

If V µ R
n is compact and 0 < d < n, then the Minkowski content of V is given by

lim
‘æ0

‘d≠n Voln{z : dist(z, V ) Æ ‘}

provided that the limit exists.
This limit often exists for random fractal subsets that exhibit ”statistical self-similarity” as we zoom in.
Similar concepts: local time, occupation measure.
d-dimensional random fractals tend to have zero d-dimensional Hausdor� measure, Minkowski content is
the way to measure the size of the set.
Generally requires finer analysis of a fractal to show existence of Minkowski content than show Hausdor�
dimension.
One “template” for a proof of existence of Minkowski content for random fractals is similar to the LQG
proof. However, it requires fine analysis of the random object.
The first step is a sharp one-point estimate (Green’s function)

Greg Lawler Gaussian Free Field (GFF) and Related Topics March 16, 2022 49 / 60



SLE Green’s function

Theorem
If 0 < Ÿ < 8, there exists ĉ > 0 and u > 0 such that if “ is a chordal SLEŸ path from z to w in simply
connected D, then for r < dist(’, “)/2,

P{dist(’, “) < r} = GD(’; z, w) r2≠d
#

1 + O(ru)
$

,

where
GD(’; z, w) = ĉ rD(’)d≠2 [sin argD(’; z, w)]4a≠1.

General idea to prove that f(t) ≥ c t– as t æ Œ for some c.
First try along a geometric sequence an = f(en) so that it becomes an ≥ ce–n.
Try to show that

an+1 = an e– [1 + O(e≠un)].

This implies that there exists c such that

an = c e–n [1 + O(e≠un)]

but does not compute the c.
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L2-estimate — second moment bound

Fact
Fix a dyadic square S, There exists c such that if z, w œ S, then

P {dist(z, “) < r, dist(w, “) < r} Æ c r2(2≠d) |z ≠ w|d≠2.

This gives
E[Fn(z) Fn(w)] Æ |z ≠ w|d≠2, |z ≠ w| Ø e≠n,

E[Fn(z) Fn(w)] Æ e(2≠d)n
E[Fn(z)] Æ c e(2≠d)n, |z ≠ w| Æ e≠n.

E

#
µn(S)2

$
=

⁄

S

⁄

S

E[Fn(z) Fn(w)] dA(z) dA(w) Æ C < Œ
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For SLE we need to find the probability that dist(“, z) < e≠(n+1) given that dist(“, z) < e≠n.
This probability depends strongly on what the path “ looks like near z but is almost independent of the
other parts.
Find an invariant distribution corresponding to “what SLE paths look like near z” given that they reach
the circle of radius e≠n.

In our set-up we get that

E[�n(z)] = E[Fn+1(z) ≠ Fn(z)]

= E

#
Fn(z) E

!
e2≠d 1{dist(“, z) < e≠(n+1)} ≠ 1 | Fn(z)

"$

= O(e≠un).

The random variable
E

!
e2≠d 1{dist(“, z) < e≠(n+1)} ≠ 1 | Fn(z)

"

depends on the path up to the first time it gets within distance e≠n of z.
It is of order 1 but its expectation with respect to the “invariant distribution” is zero.
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The hardest part of the estimate is the two-point estimate. Roughly speaking, if z, w are not to close,
then for n large

E

!
e2≠d 1{dist(“, z) < e≠(n+1)} ≠ 1 | Fn(z)

"

and
E

!
e2≠d 1{dist(“, w) < e≠(n+1)} ≠ 1 | Fn(w)

"

are almost independent random variables.
This is used to bound

E [�n(z) �n(w)] .

We will not discuss details — requires careful analysis of SLE path.
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Conformal covariance

Fact
f : D æ D̃ be a conformal transformation; µ the Minkowski content measure in D and µ̃ the Minkowski
content measure in D̃. Then,

µ̃ = |f Õ|d (f ¶ µ).

Another way of saying this is that if “ is a path in D with the natural parametrization and f ¶ “ is the
image of “ also with the natural parametrization, then the amount of time for f ¶ “ to traverse f(“[r, s])
is ⁄ s

r

|f Õ(“(t))|d dt.
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Dyadic square perspective to fractal measures

Fix domain D and let Qn = Qn(D) be the set of (half-open, half-closed) dyadic squares whose closure
are contained in D.
Approximating measures µn will be absolutely continuous with respect to Lebesgue measure with density
Fn constant on each S œ Qn.
Simplest example: Fn © 1 and µ is area.

For 0 < – Æ 2, define µ(–)
n by

µ(–)
n (S) = [µn(S)]–/2, S œ Qn.

If V µ D, write
µ(–)

V,n(S) = µ(–)
n (S) 1{S fl V ”= ÿ}, S œ Qn.

If Fn © 1 and – = d, then for random V we expect

µ(d)
V := lim

næŒ
µ(d)

V,n

is (a multiple of) Minkowski content measure on V .
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Dyadic square perspective of GFF

{µn(S) : S œ Qn} is a (finitely or countably infinite) indexed centered Gaussian process with

E

#
µn(S) µn(SÕ)

$
=

⁄

S

⁄

SÕ
GD(z, w) dA(z) dA(w).

E[µn(S)2] = 2≠2n [n log 2 + O(1)].
Well defined but does not have the Markov property.
Define

�n(S) = average of h on S = 22n µn(S).

{�n(S) : S œ Qn} is also a centered Gaussian field with

E[�n(S)2] = n log 2 + O(1), E

#
e⁄ �n(S)

$
® 2⁄2n/2.
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LQG area (– = 2) measure with parameter ⁄ (recall that we used ⁄ = Ô
Ÿ before)

Fn(S) = 2≠⁄2n/2 e⁄�n(S),

µn(S) = 2≠2n Fn(S) = 2≠(4+⁄2)n/2 e⁄�n(S).

LQG –-measure with parameter ⁄: if S œ Qn,

µ(–)
n (S) = µn(S)–/2 = 2≠(4+⁄2)–n/4 e(–⁄/2) �n(S).

If V is a random subset of fractal dimension d, independent of the field and S œ Qn,

µ(–)
V,n(S) = µn(S)–/2 1{S fl V ”= ÿ}

= 2≠(1+ ⁄2
4 )–n e(–⁄/2) �n(S) 1{S fl V ”= ÿ}.

Note that
E

#
µ(–)

V,n(S)
$

= 2≠—n, — = –

Ë
1 + ⁄2

4

È
≠

–2⁄2

8
+ 2 ≠ d.
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KPZ (Knizhnik, Polyakov, Zamolodchikov) Relation

If S is a fixed dyadic square then it is a union of O(22n) squares in Qn, and hence if n æ Œ,

E[µ(–)
V,n(S)] ® 22n 2≠n— .

The quantum dimension dq with respect to the parameter ⁄ is the – such that the right-hand side is of
order one. This gives the KPZ relation

d = dq

Ë
1 + ⁄2

4

È
≠

dq
2 ⁄2

8
.

If Ÿ < 4 and we choose ⁄ = Ô
Ÿ, then the quantum dimension of an SLEŸ path “ equals one.

The corresponding measure µ(1)
“ is called the quantum length of the SLEŸ path.
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Rigorous construction of quantum length of SLE path

Take independent GFF and SLEŸ.
Independent GFF h and SLEŸ path “ in D.

Fn(z) = e≠n(Ÿ/8) exp
Ó Ô

Ÿ

2
�n(z)

Ô
e≠n(7Ÿ/8) 1{dist(“, z) < e≠n}.

Blue measure supported on set of fractal dimension 2 ≠ Ÿ
8 . (codimension Ÿ

8 )

Red measure supported on set of fractal dimension 1 + Ÿ
8 . (codimension 7Ÿ

8 )
The limit measure is supported on a set of codimension 1, that is, dimension 1.
Establishing the limit uses same techniques as earlier this lecture.
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Conformal covariance

Let f : D æ DÕ be a conformal transformation.
If h is a GFF in D, let h̃ be the image in DÕ.
Let µ be the quantum length in D using h and µ̃ the quantum length in DÕ using h̃. Then

µ̃ = |f Õ|1+ Ÿ
4 (f ¶ µ).

We think of
|f Õ|1+ Ÿ

4 = |f Õ|d |f Õ|
Ÿ
8
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