Building and Contributing to
WPILib (2018-19 Edition)

Brad Miller
Sam Carlberg

e
Agenda

« WPILib Overview

* What's New in 2018

* Development Trends and 2019 Plans
- 2019 Demo

» Building WPILib Components

* Desktop Tools

- WPILib Components

« GitHub Workflow

« How to Contribute

WPILIb Mission

Enable FIRST teams to focus on writing game-specific software rather than

on hardware details — “raise the floor, don’t lower the ceiling”
- Enable teams with limited programming knowledge or mentor experience to do as much
as possible
- Enable teams with intermediate programming knowledge to use powerful tools such as
PID, GRIP, Dashboards, RobotBuilder to improve their robot performance
- Enable teams with advanced programming knowledge to use the full power of the
system

« Support the Kit of Parts control system hardware (e.g. controllers, sensors)
- Provide parity across all officially supported languages (C++, Java, LabView)

- Enable teams to pick the language of their choice without worrying about supported
features

- To this end, the library and associated tools need to be robust, reliable,

maintainable, and understandable! @

A
Who Owns All the Pieces

C++ and Java libraries roboRIO image / libraries Field Mgmt System (FMS)
C++ and Java NetworkTables FRC NetComm on roboRIO DS-Robot-FMS interfaces
C++ and Java CameraServer LabVIEW libraries Field Network Configuration

SmartDashboard FRC Driver Station Robot Radio
Shuffleboard LabVIEW Dashboard Robot and Game Rules
Outline Viewer FPGA code and interface library
RobotBuilder roboRIO Imaging Tool
GRIP

C++ and Java toolchains

-5
WPILib Suite of Projects

WPILib C++ Library C++ User library for C++ robot programs
WPILib Java Library Java User library for Java robot programs
WPILib HAL C++ Low-level hardware library for C++ and Java
SmartDashboard Java Graphical dashboard

Shuffleboard Java Graphical dashboard

Outline Viewer Java NetworkTable viewer

RobotBuilder Java Code generator

Eclipse Plugins Java IDE & example programs

ntcore C++ NetworkTables library for C++ and Java
cscore C++ CameraServer library for C++ and Java
FRCSIim Robot program simulation environment

GRIP Java Graphical builder for image processing

5
What was New in 2018

 New extensible JavaFX dashboard: Shuffleboard
- WQPILIb:

TimedRobot base class
« RobotDrive rewrite into DifferentialDrive et al
- Components automatically publish data to NetworkTables for logging

- Java installed automatically to RIO
* Thanks to Azul Systems provided Zulu JRE

* Much faster deployment (<5 seconds)

* NetworkTables:
- Improved synchronization behavior
- Added instance/entry handle-based interfaces

« QOutlineViewer rewrite
« TCP netconsole (riolog)

Recent Trends in FRC Programming

- Emergence of alternative build systems and IDEs
» GradleRIO
Use of Intellid for Java programmers

« Seeing downsides of current vendor library approach
Dependency management
+ Separate installers

+ GitHub being used more widely
 Increasing popularity of Java
» Continuing demand for simulation and unit testing features

I
2019 Plans

Drumroll please...

2019 Plans

* New standard build system and IDE

°GradIeR\O

Visual Studio Code)ql

o

.
2019 Plans

New standard build system and IDE
« Visual Studio Code will be new standard IDE
+ GradleRIO build system (may be used independently of Visual Studio Code)
* WPILib-maintained Maven repo for 3rd party libraries

Java 11

« OpendDK 11 JRE for roboRIO
- OpendDK 11 JDK for desktop (installed with tools)

Simplified install experience with single installer
* Only separate download for offline install will be vscode itself (but we will automate it so
it's easier than the old Java installer)
« Correct version of OpendDK installed automatically for FRC use
Making other WPILib platform builds easier (desktop and coprocessor)

+ Gradle and cmake build tool options
- WPILib, ntcore, cscore, wpiutil all in single source tree (remain separate Iibs/artifacts@

» Simulator HAL used for non-RoboRIO builds so full WPILib can be built

. S
More 2019 Plans

« Simulation usability improvements and documentation
 Integrate Jaci’'s Pathfinder library for path planning

- Software motion profile support

+ Command framework improvements

- State machines
* Improved diagnostics

* RobotBuilder: more idiomatic output
« Shuffleboard
- Performance improvements, more layout options, and more customizable

- Camera Server
« Windows/Mac support for USB cameras, many other ideas in work

+ Side-by-side multi-year installs (e.g. 2018 and 2019 can both be installed)

» C++ toolchain will be “arm-frc2019-linux-gnueabi-" prefix for 2019

« All tools installed to C:\Users\Public\FRC<year> on Windows
« C++ LLVM classes moving to “wpi” hamespace

WPILib Suite Dependency Tree

WPILib WPILib

C++ Java

WPILib
C++

WPILib
Java

GradleRIO

RobotBuilder

OutlineViewer
SmartDashboard

Shuffleboard

GRIP

WQPILib HAL WQPILib HAL
NI roboRIO Simulator
Libraries Library
—» ntcore |
— e OpenCV
(RoboRIO) (Simulation)

OpenCV* «—,

Visual Studio
Code

Legend
roboRIO (armv7-
softfp)

desktop
(Win/Mac/Linux)

Visual Studio Code

Visual Studio Code (new for 2019!) il

Free, Multi-Platform, Modern IDE

* Not the same as Visual Studio!
Enables teams to develop, deploy, and debug their code on the roboRIO

Support for both C++ and Java (and other languages)

Templates for generating classes
* Subsystems
- Commands
« Starter robot code
- Sample programs
Allows interactive debugging
Early testing: more robust than Eclipse

Many 3rd party plugins available to enhance development experience

o

. A
Visual Studio Code: The “WPILIB” commands

« Type Ctrl-Shift-P (Or “View” Menu, “Command Palette”) to bring up
command palette

- Start typing “wpilib” to bring up WPILib commands

- Some menu and keyboard shortcuts (e.g. Ctrl-Shift-B to deploy)

’SJ Robot,java - TankDriveExample - Visual Studio Code
File Edit Selection View Go Debug Tasks Help

EXPLORER Robotjava X

CUUWPLe | Ll SLeWPLLLiU s JUYSLLLR,
edu.wpi.first.wpilibj.Spark;
edu.wpi.first.wpilibj.drive.DifferentialDrive;

OPEN EDITORS
Robot.java src\main\ja..
TANKDRIVEEXAMPLE
b .gradle
b .settings

4 yscode

{} launch.json Robot

IterativeRobot {

{} settings json DifferentialDrive m_myRobot;

wpilib
bin
build
gradle
src
4 main

4 java

4 frc
4 robot
Robot.java

.classpath
.project
build.gradle
gradlew

gradlew.bat

DOCKER
TEST EXPLORER
MAVEN PROJECTS

Joystick m_leftStick;
Joystick m_rightStick;

@Override
void robotInit() {
m_myRobot = new DifferentialDrive(new Spark(®), new Spark(1l));
m_leftStick = new Joystick(Q@);
m_rightStick = new Joystick(1l);

@Override
void teleopPeriodic() {
m_myRobot.tankDrive(m_leftStick.getY(), m_rightStick.getY());

OUTPUT

Ln13,Col1 Tab Size:4 UTF-8

“

Robotjava %

.wpi.first.y
i.first.wpi
XRS

0 gyro; a rate gyro to retumn the rob
yro;

Gyro class tracks the robots headir

robot rotates the new heading is comput
robotIni returned by the sensor. When ti

calibration routine where it

default offset. This is

1 disablec This class is

i autonomousInit()

. N
Visual Studio Code Demo

* Demo!

Gradle Basics ﬁ Gradle

* An open source build automation system

- Uses a Groovy-based format rather than a declarative project description
(maven, make)

» Plugin based architecture

» Good multi-project support and scales to large projects

« Great support for Java and native languages (C++)

- |Integrations for all the popular IDEs

* Most repos build with:
e ./gradlew build

» Desktop programs can usually be run with:
* ./gradlew run

* Robot projects will deploy to the robot with:
* ./gradlew deploy

.
GradleRIO

- Builds robot programs using Gradle
Replaces Ant (used in previous years in Eclipse)

- Easy to add additional libraries to your project
- A standard set of maven dependencies will be made available

« Controlled by “build.gradle”

* Visual Studio Code knows how to read this file to find dependencies and do
source lookup!

o

| R
GradleRIO “build.gradle’

plugins {
id "java" Gradle plugin dependencies
id "eclipse" “GradleRIO” part will change
id "idea” for official GradleRIO

id "jaci.openrio.gradle.GradleRIO" version "2018.01.22"

def TEAM = 5333

’ , Configure team number; with
def ROBOT CLASS = "frc.robot.Robot

Visual Studio Code, configured

if (project.hasProperty('teamNumber')) { via Code preferences
TEAM = teamNumber.toInteger()

def useDebug = false

Debug support

if (project.hasProperty('debugMode')) {
useDebug = true;

. B
GradleRIO “build.gradle’

deploy {
targets {
target("roborio", jaci.openrio.gradle.frc.RoboRIO) {Defines targets (RObORIO) and
team = TEAM artifacts (deployable files)
}
}

artifacts {

artifact('frcJava', jaci.openrio.gradle.frc.FRCJavaArtifact) {
targets << "roborio"

debug = useDebug

dependencies {

. L Defines dependencies. In this
compile wpilib()

compile ctre() case, WPILib (+ friends),
compile navx() CTRE Phoenix (Talon SRX)
compile openrio.powerup.matchData() and NavX.

-
GradleRIO “build.gradle’

Jar {
from configurations.compile.collect { it.isDirectory() ? it : zipTree(it) }
manifest jaci.openrio.gradle.GradleRIOPlugin.javaManifest (ROBOT CLASS)

}

Setting up the Jar File. In this case, adding all
libraries into the main jar (‘fat jar') in order to
make them all available at runtime. Also adding
the manifest so WPILib knows where to look
for our Robot Class.

task wrapper(type: Wrapper) {

gradleVersion = '4.4'
} Gradle wrapper version to use.

Don’t change this.

Building WPILiIb Components

- s
Dependencies and Configuring Local Changes

- Build outputs are shared between repositories as Maven dependencies

* Global repositories for our builds, with 2 channels
-+ Officially-released builds: http:/first.wpi.edu/FRC/roborio/maven/release
- Bleeding edge: http://first.wpi.edu/FRC/roborio/maven/development
* Local builds publish to ~/releases/maven/development
e ./gradlew publish
« GradleRIO will immediately start using your locally built version (future)
Dependencies are suffixed with target platform
« There is a “-all” that provides combined native and/or JNI libraries
« Versioning is SemVer based

* Year-style: year.required_update.optional update (2018.3.2)
- Standard-style: major.minor.revision (3.1.7)

http://first.wpi.edu/FRC/roborio/maven/release
http://first.wpi.edu/FRC/roborio/maven/development

26
Creating Vendor Libraries

« GradleRIO supports integration of vendor libraries
« When the necessary files are installed in the $SHOME/wpilib/<year>/user directory,
GradleRIO will automatically make them available to user programs and take care of
copying the libraries to the robot
« This makes the vendor library transparently available to the user
* The CANTalon and NavX libraries use the vendor approach for 2017+
* There is a project template on GitHub (wpilibsuite/vendor-template) for

creating new vendor libraries
* Note if the library is a C/C++ library, it’s still necessary to write appropriate JNI and Java
wrapper code, although the wpiutil library has some classes that make writing wrappers
easier

o

Desktop tools

- SmartDashboard
- Shuffleboard

* QutlineViewer

+ RobotBuilder

- GRIP

Synergy in the tools - the result is
greater than the sum of the parts

SmartDashboard

- Java GUI to NetworkTables that displays robot data in real time
- Fields displayed as text fields or more elaborately in graphs, dials, etc.
- Displays robot program state
(e.g., executing commands and subsystem status)
- Displays buttons for setting variables on your robot
+ Allows choosing startup options on the dashboard for the robot program

|£%| SmartDashboard - = O P

o

Shuffleboard

¥ Shuffleboard

» CameraServer
v NetworkTables
Name
¥ LiveWindow
v .status
.name
type
LW Enabled
Robot
¥ CAN Subsystem
v CAN Jaguar
.name
type
Type
v CAN Talon
.name
type
Type
.name
type
¥ Elevator
¥ Potentiometer
.name
type
Value
v Victor
.name
type
Value

name

- Recording Tab Help
Sources Widgets SmartDashboard LiveWindow X +

Value

.status
LW Status
true

Testing

CAN Jaguar
CANSpeedController
CANJaguar

CAN Talon
CANSpeedController
CANTalon

CAN Subsystem

LW Subsystem

Potentiometer
Analog Input
7.95245015017018

Victor
Speed Controller
-0.8879998622836087

Flevator

Example Subsystem Wrist
0389 -
ov 125V 250V 375V 5V
Accelerometer Potentiometer
Distance 9.603520334948618
o
Speed 11.476233030873704 B o0 03 !
Encoder 1 0.03074912843109434 Zero
off Victor
On
Reverse
Spike
@
-1 -0.5 0 0.5 1
-0.2912041681362849 Zero
Victor
]
5 45
0 “w

" » 0 Loop

(]

X

Shuffleboard

« JavaFX GUI with themes

« Supports data from arbitrary sources (not just NetworkTables)

- Can record and play back data

- Displays and controls robot state

- Replaces SFX, eventually SmartDashboard

- Extensible and customizable

« Tabbed user interface where tabs can have a filter to select data that should

be displayed there.

- Think debug display tab and driver display tab that load from /SmartDashboard/debug/
and /SmartDashboard/driver/

o

OutlineViewer

¥ TestSystem

¥ Accelerometer

Connected to server at localhost

® " QutlineViewer - O
B
Key Value Type
¥ Root
¥ LiveWindow
¥ Elevator
i 0.5 kDouble
enabled false kBoolean
.name Elevator kString
p 0.5 kDouble
¥ Potentiometer
type Analog Input kString
.name Potentiometer kString
Value -11.4603705491785 kDouble
¥ Victor
type Speed Controller kString
.name Victor kString
Value 0.340138446493669 kDouble
setpoint 1.0 kDouble
type LW Subsystem kString
d 0.5 kDouble
f 0.5 kDouble

OutlineViewer

* NetworkTables client that displays every key and value

» Values can be edited and keys can be created and deleted

At startup, prompts for address to connect to (use your team number)

- Displays connection status (color-coded)

- Can dump/load the current state of NetworkTables to a file and reload it later

o

RobotBuilder

- Create a command based framework for your robot program

FRC RobotBuilder

@ Operator Interface
¥ @ Commands
" Autonomous Command

Sensors

Actuators

8 0.0

File Edit View Export Help

‘ New | Save | Open | Undo I Redo | Verify |]=va | Wiring Table] C++ | Getting Started ‘

Subsystems @l GearsBot Property Value
v { Subsystems Name

@@ Drive Train Default Command None
@ Elevator
@l Wrist
& Claw

Subsystem

‘What is it?
|A subsystem on a robot is a distinct part of the robot that performs a certain function. Within the command based robot
[framework, subsystems are encapsulated (represented) by classes.

Subsystems can contain the following attributes:

Sensors: Things that sense including buttons, potentiometers, encoders and more,

. Actuators: Things that move or act in the physical world, usually motors or pneumatics.

State: The current status of the subsystem. This can include data recorded from sensors such as the position of
the arm or the number of balls stored. information on progress towards a goal, a desired PID setpoint and much
more.

. Capabilities: Higher level actions that the subsystem can be told to perform by various commands. These are
usually implemented by functions that update the subsystems state in some way.

Nlatas Cimnla sirhowstame mas ha miscina ana ar marva af thaca atteihitas

d 1D

-

Error! Please fix the red components. Hovering over them will provide more details.

RobotBuilder automated test code

File View
Wrist Ungrouped
Elevator PIDC " PIDController Victor[2]
_omo er . | PIDtype: Displacement O 0.0 Zero
PID type: Displacement I I i I
PP 1.0 S .0 AnalogPotentiometer[2] 0.247802709
I: 0.0 Victor[1]
I: 0.0
D: 0.0 | -1.0 Zero
D: 0.0 ‘ I !
0.0 0.0 AnalogPotentiometer[1] 0.250244115
Setpoint: 0.0 Victor[0]
Setpoint: 0.0
Enabled: Sl | i I 0.0 Zero

[NON = Untitled — Edited ~

File View

ElevatorMove: up start CloseGripper start ElevatorMove: down start
OpenGripper start DefaultDrive start Autonomous Command start
WristUp: up start DriveFoward start

PrepareToGrab start

DriveAway start

Grab start

PlaceSoda start

WristUp: horizontal start

Everything start

Operation Palette

G I t I I 00 * GRIP Computer Vision Engine
Preview
e dst

mask

Graphically Represented
Image Processing engine
Allows rapidly prototyping and
deploying computer vision

algorithms for robotics = i
applications o /u;;,o ; -

INTER_LUINEAR ~

Future Plans for Desktop Tools

- Shuffleboard

« Convert recording files to CSV

- Performance improvements (graphs etc.)
* More layout options

- Tighter WPILib integration

- GRIP

- Dark theme

« Custom python operations
« Automatic file backup

« GPU acceleration

« Limelight camera support

Cross Platform “Core” Libraries

wpiutil
ntcore
cscore

Cross Platform “Core” Library Dependencies

« Compiler toolchains

+ Platform native C++ compiler/linker
Windows: MSVC, Mac: clang, Linux: GCC
C++11 support is required as ntcore extensively uses C++11 features including std::thread

-+ Platform native JDK (if building Java library)
* FRC ARM toolchain (if building roboRIO library)

- Both ntcore and cscore depend on wpiutil
* The cscore library also depends on the WPI build of OpenCV

o

WPI Utility Library (wpiutil)

« Cross-platform C++ library used by C++ WPILib, ntcore, and cscore to
provide useful high performance, low overhead C++ classes

« Classes include StringRef, StringMap, SmallVector

- Many of these are copied from LLVM (some with minor tweaks)

« Will be moved from “llvm” namespace to “wpi” namespace for 2019 to avoid conflicts
with system libraries

o

NetworkTables Core Library (ntcore)

* Implements NetworkTables 3.0 client and server

« High performance, cross-platform C++ library

* JNI wrappers for Java use

* Provides C++ and Java “NetworkTable” and “ITable” classes

C ntcore API

C++ User B Bl Java User
Other Code | Code
Language .
Wrappers i |
C++ : Java
l mw ‘NetworkTable” [“NetworkTable”
class i class
|
|
|

| L

C++ ntcore API

. B
CameraServer Core Library (cscore)

+ High-performance access to USB and HTTP cameras
 HTTP streaming camera server
* OpenCV access to camera streams
« OpenCV outputs can also be streamed via HTTP
- Designed for robust (e.g. physical camera disconnections) and low-
overhead operation
HTTP streaming of MJPG-capable USB camera typically requires <5% CPU
« Cross-platform C++ implementation with C interfaces and JNI wrappers

- Note: cscore does not provide the “CameraServer” class (instead, this is
part of WPILib) to avoid a NetworkTables dependency

o

Contributing & GitHub

. S
GitHub Workflow

https://github.com/wpilibsuite/allwpilib
Standard GitHub workflow - branch, commit, pull request

Use Jenkins, Travis Cl, AppVeyor to run tests
« Travis and AppVeyor run automatically
+ Jenkins waits for permission
* Runs unit and integration tests

After merge

- Jenkins checks out and builds changes

* Downstream dependencies are rebuilt

- Build artifacts published to the development channel
Build promotion

* Development: each change merged to master
- Release: alpha, beta, rc, release

https://github.com/wpilibsuite/allwpilib

- s
Our Policy on WPILib Suite Changes

Everything in the library has to work for the 3000+ teams that will use it

We need to be able to support submitted changes even if the author loses
iInterest

Tool suite changes must be generally useful for a broad group of teams
Changes in one language usually need corresponding changes in the other
language

Substantial changes often need to have corresponding LV changes

Library changes should have tests

Code should be well documented, often with ScreenSteps

o

. . R
What Should You Contribute

Bug reports and fixes!

Improvements (large and small) to existing classes
« 2016 example: configurable SPI| address for a sensor, making it more general purpose
« 2017 example: HAL overhaul, PWMSpeedController subclass
« 2018 example: TimedRobot, RobotDrive overhaul, SpeedControllerGroup

» Generic reusable library components
- 2016 example: Filter and LinearDigitalFilter classes
« 2017 example: XBoxController class
« 2018 example: low-fi sim support

« Good rule of thumb: we'll almost always gratefully accept bug fixes. It's best to ask about
new features before making a large time investment
« Particularly like features that make it easier to help teams with less experience be more

successful @

.
What Should You Not Contribute

Game-specific code — the game changes each year!
Team-specific code — WPILib needs to be generic

New sensors

Logistics of this is tricky—at the very least, we need to be able to test it in hardware!

If you work for a company and want to get a sensor into the KOP, please contact FIRST
We're looking at establishing a “white pages” of unofficial (not officially supported) user-
contributed modules

If you just want to add support for a new sensor, consider making it available as a
vendor library instead!

Maijor restructuring of library classes or major rewrites

|deas accepted, but please talk to us before putting in a lot of work

Backwards compatibility (and bitrot) are real concerns for teams @

WPILib Suite Development Schedule

Championship Pare down list of improvements for next
season

Mid May Working full speed on updates

September Beta team selection
(~30 teams per language)

Late September — October Beta testing begins
New projects wind down

December Beta testing ends, code freeze, and only bug
fixes

Late December Final builds and kits are created

At Kickoff Game-specific code and field images are

posted or merged

Questions?

Backup

Cross Platform Library Code Organization

doc/ Standalone documentation (e.g. protocols)
src/main/java/ Java wrapper source code
src/test/javal/ Java automated unit tests

src/main/native/include/ External-facing (APIl) C and C++ headers

src/main/native/cpp/ C++ source code
src/main/native/cpp/jni/ JNI bridge C++ source code

examples/ C++ standalone tests (example programs, not automated)
src/test/native/cpp/ C++ automated unit tests (uses gtest/gmock)

gradle/ Build support files

src/dev/java Java development executable (Use "gradlew run’ to run)

src/dev/native/cpp C++ development executable (Use "gradlew runCpp" to run)

