

Hyper-HaBERTor: a light-weight pretrained hatespeech language detector using hypercomplex space

Thanh Tran, Kyumin Lee

Department of Computer Science and Data Science

Worcester Polytechnic Institute

MA, USA

2020

What is hatespeech?

Motivation

Problem

Our Model

 Hatespeech: refer to the speech that conveys hateful or discriminatory or stereotyped ideas on the basis of factors such as: race, gender, religion, sexual orientation.

Conclusion

2/58

Experiments

Why detecting hatespeech?

Easy to spread hatespeech to a large number of online users.

Motivation Our Model

Experiments Conclusion

Why detecting hatespeech?

Hatespeech hurts targeting people:

- Restrict their freedom of speech on social medias.
- Interfere with civil discourse.
- Turn good people away from saying out loud their opinions.

What's wrong with existing hatespeech detectors?

- Some of the first works design features manually and then feed into traditional machine learning models (i.e. SVM, Logistic Regression):
 → Limited by the quality and quantity of the human-crafted features.
- Recent works used deep neural network:
 - CNN based models: [1], [2].
 - RNN based models: [3]

− → Those models lack the ability of Language Understanding and the results are sensitive with weight initialization methods.

[1] Gamback et al., Using convolutional neural networks to classify hatespeech, ACL 2017 workshop.[2] Park et al., One-step and twostep classification for abusive language detection on twitter, ACL 2017.[3] Badjatiya et al., Deep learning for hate speech detection in tweets, WWW 2017.

What's wrong with existing hatespeech detectors?

- Recent pretrained language model (BERT-base [1]) has shown its superior in NLP tasks by pretraining a language model on a vast amount of texts.
 - While hatespeech texts have unique properties compared to normal texts (i.e. using a lot of asterisks like: f*ck, ...; or letters are often replaced by numbers: i → 1, g → 9, ...)

- \rightarrow Language model like BERT-base model is still limited in two points:

- Lack of hatespeech language understanding because they are pretrain on nonhatespeech (formal) corpus like Wiki, Book corpus.
- Has a lot number of parameters, which cause a lot of (GPU) memory to train.
- Recent efforts aim to reduce BERT-base complexity by knowledge distillation method,
 - Still lack of hatespeech language understanding, and performed worse than BERT-base.

Conclusion

[1] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, EMNLP 2019.

Experiments

Our Model

Motivation

Problem

Motivation

Can we build a pretrained Language Model that

- Has a smaller number of parameters ?
 - Solution: Using Quaternion representations and Quaternion feed forward transformation.
- With a better or equivalent performance on hatespeech detection task?
 - Solution: Pretrain from scratch a language model on hatespeech related corpus to equip the model with some hatespeech language understanding.

What is Quaternion representations?

• Quaternion number:

$$X = r + a \mathbf{i} + b \mathbf{j} + c \mathbf{k}$$

(*ijk* = *i*² = *j*² = *k*² = -1; *ij* = *k*; *jk* = *i*; *ki* = *j*; *ji* = -*k*; *kj* = -*i*; *ik* = -*j*)
For example: X = 5 + 2**i** + 3**j** + 4**k**

• Hamilton product between two Quaternions X and Y ($X \otimes Y$):

$$X \otimes Y = r_X r_Y - a_X a_Y - b_X b_Y - c_X c_Y + (r_X a_Y + a_X r_Y + b_X c_Y - c_X b_Y) i + (r_X b_Y - a_X c_Y + b_X r_Y + c_X a_Y) j + (r_X c_Y + a_X b_Y - b_X a_Y + c_X r_Y) k$$
$$X \otimes Y = [r_X, a_X, b_X, c_X] \begin{bmatrix} r_Y & a_Y & b_Y & c_Y \\ -a_Y & r_Y & -c_Y & b_Y \\ -b_Y & c_Y & r_Y & -a_Y \\ -c_Y & -b_Y & a_Y & r_Y \end{bmatrix}$$

Why Quaternion representation?

Benefits:

- Provide a better inter-dependencies interaction coding due to the weight sharing in Hamilton product.
- Reduce 75% of the number of parameters over real-valued representations in Euclidean space.

- Recent works have shown its great performance in NLP and computer vision [1,2,3].

[1] Tay et al., "Lightweight and efficient neural natural language processing with quaternion networks", ACL 2019.

[2] Parcollet et al., "Quaternion Recurrent Neural Network ", ICLR 2019.

[3] Yu et al., "Quaternion-based sparse representation of color image", ICME 2013.

Our model: Hyper-HaBERTor = Quaternion + BERT + pretrain on hatespeech corpus.

Architecture:

Comparision between BERT-base and Hyper-HaBERTor

How many parameters can we reduce?

Embedding size	intermediate size	#layers	Vocab size
768	3,072	12	32,000

Component Vocab Self- attention Transform ke 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder layer Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention Image: Self- attention 1 encoder Image: Self- attention <			From	То	#params
Vocab					24,576,000
1 encoder layer	Self- attention	Transform key	768	768	589,824
		Transform query	768	768	589,824
		Transform value	768	768	589,824
		output	768	768	589,824
	Intermediate		768	3,072	2,359,296
	Output		3,072	768	2,359,296
1 encoder layer					7,077,888
12 encoder layers					84,934,656
Pooling			768	768	589,824
Total				110,100,480	

ComponentVocabSelf- attentionTransform ke attention1 encoder layerTransform query1 IntermediateOutput1 encoder layerOutput			From	То	#params
Vocab					24,576,000
1 encoder layer	Self- attention	Transform key	768	768	147,456
		Transform query	768	768	147,456
		Transform value	768	768	147,456
		output	768	768	147,456
	Intermediate		768	3,072	589,824
	Output		3,072	768	589,824
1 encoder layer					1,769,472
12 encoder layers					21,233,664
Pooling			768	768	147,456
Total	otal				45,957,120

Hyper-HaBERTor

BERT-base

Motivation

Pro<u>blem</u>

Our Model

Experiments

Conclusion

Experiments

BERT-base Hyper-HaBERTor Configuration: #layers 12 6 **Modification of HyperBert:** ullet#embedding size 768 384 Using SentencePiece to learn subword vocabs. *#intermediate size* 3,072 1,536 - Real-valued transformation \rightarrow Quaternion transformation. #attention heads 12 6 - Real-valued embeddings \rightarrow Quaternion embeddings. Multi-head scaled dot attention: concatenate 4 components #vocabs 32,000 40,000 of Quaternion and do the same logic. *#parameters* 110M 18M 10 training examples for masked token prediction/instance as similar to RoBERTa. Pretraining corpus 3300M words 33M words from Yahoo (Wiki + Book) Adding targeted adversarial learning for fine-tuning pha comments. **Comparison**: ٠

Conclusion

Baseline: BERT-base (110M), DistillBert (66M), TinyBert-4layers (14.5M), RoBERTa-base (125M, 50k vocab size).

Experiments

Downstream Task: hatespeech detection.

Our Model

– Data: Yahoo, Wiki, Twitter.

Motivation

Problem

	Yahoo	Twitter	Wiki		
#Total	1.4M	16K	115K		
#Hateful (%)	100K (7%)	5K (31%)	13K (12%)		

Experiments

• Results on fine-tuning hate-speech task:

	Yahoo News		Yahoo Finance		Twitter			Wiki				
	AUC	ΑΡ	F1	AUC	ΑΡ	F1	AUC	ΑΡ	F1	AUC	ΑΡ	F1
TinyBert-4Layers	93.13	71.25	64.69	94.12	60.56	58.01	92.23	83.88	78.33	97.10	87.64	79.70
DistilBert	93.13	71.25	64.69	94.12	60.56	58.01	92.13	80.21	77.89	97.23	88.16	80.21
BERT-base	93.56	71.65	65.30	94.60	62.34	59.72	93.21	86.67	79.68	97.75	89.23	80.73
RoBERTa	92.63	70.15	63.76	93.83	59.73	57.74	90.63	84.36	76.30	95.71	84.48	76.74
HyperBERT - adv	93.55	71.94	65.54	95.20	62.17	59.65	91.88	84.23	78.05	97.06	87.24	79.46
HyperBERT + adv	93.71	72.59	66.08	95.11	62.88	59.88	93.26	86.81	80.21	97.24	88.01	80.27

HyperBERT get better results with adversarial learning on fine-tuning downstream task. HyperBERT + adv work best for Yahoo and Twitter, but less than BERT-base in wiki with a small amount. Reason: BERT-base is pretrained on Wiki --> had advantage.

Motivation Our Model

Experiments

Conclusion

In this talk:

- Utilizing Quaternion space in building a hatespeech language model using Quaternion representations for the hatespeech detection task.
 - First work using Quaternion representations on a pretrained language model.
 - First work applies adversarial learning on Quaternion space.
- Hyper-HaBERTor obtained, on average, slightly better F1 scores on several hatespeech datasets compared to BERT-base model, while reduce 6 times number of parameters.

Thank You and Questions?

Worcester Polytechnic Institute