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While many eminent economists have expressed disdain about the abstract nature of 

contemporary economic theory and how it is removed from reality, few offer a cogent solution to 

this problem. Jay Forrester, a control engineer turned economics researcher, proposed replacing 

the abstract economic concepts with manager-based constructs. He also aspired to replace 

differential equations with an intuitive integration process he invented that can be implemented 

on a digital computer. This chapter attempts to understand how economic theory separated from 

reality, and how modeling it, using Forrester’s intuitive calculus can make it verifiable and 

operational. 

The development of economics into a non-verifiable theory  

Classical thinkers of economics addressed complex behavioral relationships encompassing the 

roles pertaining to the various operational aspects of production and consumption. They also 

recognized the information links between roles formed in this process and how they affected 

macroeconomic behavior. They albeit viewed the role players as ordinary people motivated by 

self-interest that drove their decisions. And they described the dynamics of the interaction 

between the various roles and how that would create a good life for all and thus benefit the 

society (1). Copious narratives were needed to describe the dynamics as can be seen in Adam 

Smith’s Wealth of Nations (2), Mill’s Principles of Political Economy (3), and Marx’s Capital 

(4). 

The classical thinkers of course made implicit assumptions about social norms, like ownership 

and bargaining positions of the various actors (5) (6), but nowhere in their thought process 

appeared the assumptions of perfect information and rational agency which are the pivotal 

concepts underlying contemporary economic theory. Their description of the dynamics entailed 

articulating the feedback processes in the economic systems that created growth, limits, decline 

and instability, but their explicit representation was missing and the analogy of the invisible hand 



came handy for rationalizing macro-behavior arising out of the micro-structure of roles when 

words could not adequately describe the deductive logic (7).  

The contemporary economic models are built around a hypothetical world of rational agency and 

perfect information. They are often described in mathematical language. Unfortunately, their 

logic cannot be verified in real world where managers working with limited information are the 

role players, not the rational agents acting upon perfect information. As I have discussed in (7), 

many scholars have pointed to the degeneration of economic theory into a non-verifiable model, 

but without pointing to how this progression happened and how the theory can be reformed. 

How use of differential equations thwarted verification process? 

As mathematics began to be used to explore surmised concepts, not only differential equations 

and graphical representations began to supplement narrative, the use of the precise but limited 

language of mathematics also led to making additional implicit assumptions. The role structure 

and its eventual outcomes could be conveniently merged for the sake of mathematical 

expediency, which gave birth to the concepts of rational agency and perfect information. 

Calculus became the ubiquitous language of economics. However, since the differentiation 

process and hence the structure of differential equations could not be verified in reality, 

verification was often sidetracked and economics developed into an abstract theory which we 

teach like a physics of social systems, with one caveat: It has greatly diverged from reality. This 

caveat is often conveniently rejected by ruling that the reality (the market) has imperfections, 

although the reality is a fact and a model, if it is to be valid, must attempt to conform to that fact.  

How feedback became invisible hand? 

The concept of feedback is central to economics. In the context of growth, it manifests in 

spiraling processes such as multiplier and acceleration effects built into the growth models. In 

the context of adjustment towards a goal, it is implicit in models explaining market clearing, 

oscillations as in business cycles, and dynamic equilibrium as in Mill’s stationary state. It is 

however rarely referred to as feedback. Instead, classical writings used copious narratives to 

show how a market could create benefit for all through iterative actions of selfish individual 

actors. The feedback process was vaguely alluded to as an invisible hand – a term that caught on. 

When the use of mathematics called for merging the iterative individual actions and their 

outcomes, and the abstract concept of a rational agent emerged, the explicit recognition of the 

feedback that created rational outcomes from bounded rational actions was further pushed into 

obscurity.  

The so-called positive economic theory is divided into two main silos namely the price theory 

(microeconomics) and the growth theory (macroeconomics). The former copiously refers to the 

negative feedbacks that clear the markets and maintain a balance between the supply and the 

demand without clearly describing them. The later alludes to the gain of the positive feedback 

that creates growth while still evading the term. Both silos concede to the invisible hand when 

narrative, graphics and mathematics get wooly.  

Indeed, while the concept of feedback in social and economic systems has existed for a long time 

(8), its explicit representation has been lacking. Even when we use the precise language of 

mathematics, the solution of a differential equation is a function of parameters and time, while 



the existence of feedback in a system of differential equation is not intuitively recognizable but 

must be inferred from what is called eigen values – an array obtained by complex manipulation 

of coefficients of the system of differential equations defining the system. A system of 

differential equations may or may not contain any feedback loops, but we never know this unless 

we are able to interpret their eigen value matric which calls for considerable mathematical 

acumen. Hence, a gulf emerged between domain experts who created and understood theory and 

policy makers and managers who relied on common sense. 

How lead times, perceptions, and expectations further mystified theory? 

Contemporary economics recognizes that the information we act on is created not by an 

instantaneous recognition of actual conditions but by our perceptions and expectations of those 

conditions (9). Complex narratives and mathematical formulations have been used to represent 

expectation formation with a common element: they all use functions of past streams of 

information even when they forecast what is to come. These expectations then propel changes in 

demand. They also drive the expected return on investment that drive the supply decisions.  

Contemporary economics also recognizes the operational time lags between the decisions made 

on basis of expectations and the actual realization of changes in the supply due to the 

manufacturing, shipment, and construction delays.   

The addition of perceptual and operational lags into the mathematical system however further 

mystified economic theory as it incorporated complex computational processes for representing 

them. Last, while aging chains in capital plant and equipment were recognized by Joseph 

Schumpeter (10), who suggested that the periodic replacement of old capital will lead to cyclical 

appearance of what he called creative destruction, they are rarely included in the textbook 

economics, possibly also because of the additional mathematical complexity they add to the 

model, although they underlie the multiple equilibria so pervasive in the economic systems 

around us. 

The verifiable calculus of system dynamics and how it can 

operationalize economics. 

Since reality integrates over time, a logic that captures this integration process can be easily 

discerned from reality and also compared to it.  Thus, capturing the integration process as it 

happens over time would allow us to construct ? models. However, if we were to replace the 

differential calculus with a process that replicated integration over time, the computational detail 

of it would be very tedious and you will definitely need a digital computer to carry out the 

integration in the system so surmised. Digital computers of course did not exist when the elegant 

art of calculus was created. Now that we have computers that can perform the tedious 

computations, why not adopt a realistic integration format that can be verified and also 

intuitively understood?  

In 2013, I had the privilege of conducting a public conversation with Jay Forrester, at the 31st 

international conference of the system dynamics society. Jay was 95 at the time of the interview. 

My concluding question to Forrester was about his legacy. Ad verbatim: Jay, what do you think 

you'll be known for in about 20 years?  

 



I expected Jay to at least mention his key inventions like the random-access memory, the radar 

controllers, and the Whirlwind computer, but I was surprised by his response, also reproduced ad 

verbatim below: 

That's much too short a time. I would rather talk about what I would be remembered for 50 or 80 

years from now. Because the whole future, the possibilities of system dynamics are so huge that 

it's going to take a very long time for the main part of it to take shape.  

Just for example, one thing that we should look forward to is a replacement of differential 

equations in the engineering and the social sciences. Differential equations have been the 

fundamental way of dealing with dynamics. It is terribly misleading. It causes a great deal of 

harm. And the reasons for this, mathematicians have had some difficulty defining a derivative. 

And there is a reason. There is no such thing. Nowhere in engineering, science, cultural theories, 

nowhere in the real world is a derivative taken. Nature only integrates. Nature only accumulates. 

And as soon as you approach it from that point, any child who can fill a water glass or take toys 

away from a playmate knows what accumulation is. So, they can move into complex systems and 

never discover that they're difficult.  

I had two doctoral students from our department of electrical engineering and computer science. 

They'd had all of the math and all the theory about all the state physics. They came over. And 

they built a system dynamics model of one or two levels about what was going on in the electron 

cloud at the contact point of a transistor. They said it was the first time they had ever understood 

what was happening. The differential equations had completely obscured the reality of what was 

going on. I have had MIT students argue aggressively with me that the water flows out of the 

faucet because the water in the glass is rising. That's what the differential equation says. It 

causes a reverse sense of causality in many students. It totally obscures the dynamics in most for 

the others.  

So, I would like to be known for having thrown out differential equations in all fields. This is not 

going to be over the next 50 years. And I would like to be known for having completely replaced 

economics, and that's not going to be in 25 years either. There are a few others, but that's 

enough for now. (11) 

Replacing differential equations in economics with logic mimicking how integration actually 

happens does call for reverting also the abstract economic theory into easily understood and 

verifiable classical concepts explaining how economic behavior arises from every day 

managerial roles. This transformation can create economic policy recommendations informing 

management of operations instead of replacing the imperfect reality with the theoretical perfect 

market, which is often recommended in policies arising out of a non-verifiable abstract theory. 

It should be granted that explicit representation of stocks and flows as bathtubs, faucets and 

drains requires oodles of repetitive numerical computations, which was tedious given the 

available mechanical devices like slide rules and abacuses. Professor Philips attempted to create 

an analogue representation of stocks and flows in his infamous machine (12), but that was 

cumbersome too. The abstract art of calculus together with equally abstract graphs and verbiage 

continued to reign for addressing feedback complexity in models of economics.  

An alternative approach to calculus, the system dynamics method, was created by Jay Forrester, 

after he was appointed to the faculty of MIT Sloan School of Management to create a learning 

process for management (13). He proposed another format for writing a system of differential 



equations that is intuitive, verifiable and can be implemented on modern computers. Theories 

built using this format may not be abstract as they can be verified because the structure of 

decisions taken by the actors in the model corresponds to how decisions are made in real life. 

Also, when theories entail feedback loops, those loops can be explicitly visualized.  

Several problems have been identified with mapping Forrester’s stock and flow structure to 

feedback loops (14), but in my observation, these arise out of misunderstanding the relationship 

between the two that was painstakingly explained by Forrester in his early writings using 

hierarchical graphics that can now be generated easily by software like Stella. The 

feedback/stock-flow hierarchy is explained later in this chapter but let us first assure we 

understand how differential equations may be transformed into a verifiable format.   

Transforming differential equations into verifiable format 

Consider a simple ordinary differential equation representing population growth process:  

d(P)/dt  = Pt*(birth fraction – death fraction), where P is population  (1) 

using formal calculus, we can arrive at a global solution that will give the value of population at 

all points in time in terms of its initial value, birth fraction, death fraction and time, as given in 

the following equation: 

Pt = P0 *e 
(birth fraction – death fraction) t 

If you know what function e is, you could even visualize the pattern of change, but the solution 

tells little about how the dynamic growth process proceeds. 

The differential equation in (1) can however be rewritten as: 

[P(t) - P(t - dt)]/dt = P(t)*(birth fraction – death fraction) 

or, P(t) - P(t - dt) = P(t)*(birth fraction – death fraction)*dt 

or, P(t) = P(t - dt) + (births - deaths) * dt       (2) 

Now, while equations 1 and 2 embody exactly the same logic, the former uses variables that do 

not directly correspond to the system they describe. The rate of change on the left-hand side 

cannot be calculated without having observed population stock over some length of time. 

Likewise, birth and death fractions are ex post calculations that require knowing both population 

stock and its rate of change. The variables in equation (1) do not have direct equivalents in the 

system and hence the verification of this system is difficult. As for change over time, reality 

integrates and equation (2) intuitively captures this integration process, granted, the 

computations needed to carry it out would be dreary.  

Fortunately, digital computers were already available back in the 1950s that could handle the 

dreary number crunching for these computations. Note also that when equations are written in 

the form mimicking the integration process, comparison to reality and verification of structure 

and parameters become easier. All variables and parameters in this representation would have 

real world counterparts and they could be measured independently of the model they are used in.  

Population, births and deaths information would be available from a town’s records and could be 

aggregated to suit the level of aggregation of the model (15). The integration problem is reduced 



to the simple but repetitive calculation of flows and updating stocks after small increments of 

time. 

Forrester’s associates devised a language called SIMPLE that later transformed into a more 

capable version called DYNAMO with non-formal protocol (meaning equations could be written 

in any sequence) that put the newly available computing power to work for carrying out the 

repetitive calculations. The computational task performed by the computer is illustrated in Figure 

1. 

 

 

Figure 1  Computation process for numerical simulation of stock and flow equations 

Numerical values of each variable were retained in the computer’s memory registers for three 

time- instants: past, current and future, designated as J, K and L. Starting from the initial values 

of stocks at time K, flows for the period KL were calculated based on changes between instants J 

and K. The stocks were then updated, and the memory registers moved forward a time instant, K 

becoming J and L becoming K. 

This memory thrifty process was ideal for the computers of the time. Remember, the first 

commercial IBM mainframe had a random-access memory (RAM) of only 8 KB. And the first 

computer built by Forrester had a RAM of only 8 bytes. More importantly, the nonformal 

protocol languages SIMPLE and DYNAMO extended the use of computers to a large audience 

outside of a very select group of computer programmers. 

Graphical representation of the verifiable calculus of system dynamics 

Forrester and his associates also devised several icons and connections to graphically represent 

the stock and flow structure.  Those icons and connections have been subsumed into the modern 

software. Figure 2 shows the icons and the processes they represent in a typical system dynamics 

model constructed with widely used software like STELLA, VENSIM or POWERSIM. 

A rectangle represents a stock that integrates the flows connected to it. A flow is a rate of change 

associated with that stock which may have multiple flows connected to it. These two types of 

variables are the basic components of plumbing implicit in economic theory, some part of which 

Professor Phillips attempted to represent with an analogue hydraulic machine. Information links 

from stocks to flows signify information driving the policies or rules delivering decisions. 

Intermediate computations transforming information in stocks into decision rules are represented 

by the converter symbol. A converter is an algebraic function of stocks, other converters, and 

constant parameters. Intermediate computations often involve using nonlinear relationships 

between variables. Instead of using complex mathematical functions to formulate such 

DT DT

J K L



relationships, the software allows it to be specified as a graph between two variables, the icon for 

which is a special converter with a tilde added to it.  

 

Process Icon Explanation  

Stock  

 

Accumulation or integration of flows 

linked to the icon 

Flow  

 

A rate of change or a derivative of a 

stock. Empty arrowhead indicates 

normal direction of flow. Normally 

connected to a stock. Cloud at one 

end represents unlimited source or 

sink 

Converter 

 

Algebraic function of stocks, other 

converters, and constants 

Graphical function  Graphically represented function of 

another variable in the system 

Causal link 

 

 Information relationship between two 

variables 

 

Figure 2  Diagramming tools for graphical representation of stock and flow equations 

 

The model equations corresponding to the icons in Figure 2 were originally written in SIMPLE 

and DYNAMO as shown in Figure 3. 

The leftmost field specified the equation type which was separated from the equation by a blank 

field. The letter L (for level) designated the stock equation, and the letter R (for rate) designated 

the flow equation. N type equations were used to represent initial values of stocks (and sometime 

also of other variables). C type equations represented constants, and A (for auxiliary) represented 

converters. A special type of auxiliaries could be used to represent graphical relationships that 

were specified in two lines of code. The first line gave the names of the abscissa and the 

ordinate, and also the minimum and the maximum values of the abscissa and the separation 

between its values. The second line, designated by letter T, gave the values of the ordinate 

corresponding to each value of the abscissa. Finally, NOTE in the first column allowed the 

modeler to insert any text like variable definition, equation cluster name, units of the equation or 

even just a space. 
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Figure 3  Equations corresponding to the graphical symbols in Figure 2 

 

The software now used allows construction of the stock and flow structure of the model using 

icons. Once a model the been constructed using this graphical representation, the software allows 

the modeler to specify initial values of stocks, constant parameters, algebraic functions, and 

graphical relationships that define each stock, flow, and converter. Nonquantifiable variables are 

often represented by indices that are normalized with respect to a given ambient condition. The 

population growth system of equation 2 could thus be mapped into this representation as shown 

in Figure 4: 

 

Figure 4  Stock and flow representation of equation (2) 

 
Its equations generated by the software after algebraic relationships have been defined would 

appear as follows: 

Population(t) = Population(t - dt) + (births - deaths) * dt 

INIT Population = 100 

L STOCK.K = STOCK.J + DT * (IN.JK –OUT.JK) 

N STOCKN = Initial value of stock 

R IN.KL = (STOCKS, PARAMETERS) 

R OUT.KL = 2(STOCKS, PARAMETERS) 

C CONSTANT PARAMETER  

A AUXILIARY        

A GRAPH.K = TABHL(ABSISSA.K, ORDINATE, 0, 2,.5) 

T ORDINATE = 0/.2/1/1.8/2 

NOTE 

(STOCK in Figure 2.2) 

(FLOW in Figure 2.2) 

(GRAPHICAL FUNCTION in Figure 2.2) 

(CONVERTER in Figure 2.2) 

Population
(persons)

births
(persons	per	year)

deaths
(persons	per	year)

births	per
person

per	year
(fraction/year)

deaths	per
person

per	year
(fraction/year)



INFLOWS: 

births = Population*fractional_birth_rate 

OUTFLOWS: 

deaths = Population*Fractional_death_rate 

fractional_birth_rate = 0.05 

Fractional_death_rate = .02 

 

Note the subscripts J and K are replaced by (t-dt) and t, as in standard calculus notation, and the 

subscript L has been dropped. Also, variable names can be elaborated, the software constructs 

stock equations and lists flow equation following each stock. The letters designating type in the 

first column has been dropped. More importantly, a strict correspondence between the stock/flow 

diagram and equations is assured. When the two were created separately, there often appeared 

discrepancies between them no matter how careful you were. 

Reinstating feedback loops for invisible hand 

The term system dynamics and the related concepts of feedback control originated in the 

engineering domain. They concerned the behavior of innate mechanism used to maintain 

controlled conditions like position, speed, direction, frequency, brightness, sound volume, etc. 

The adjustment processes in these mechanisms were driven by iterative corrective actions 

determined by the discrepancy from goal termed error. The use of discrepancy to drive 

adjustment processes created characteristic problems like steady state error, instability and 

sluggish adjustment. These problems were corrected by combining control processes that created 

coupled feedback loops driven by multiple functions of the error, typically, the proportional (P), 

the integral (I) and the derivative (D) functions were combined to achieve fast adjustment to goal 

without instability. Forrester transferred these concepts to social systems. With my own 

undergraduate training in electrical engineering, I was fascinated when I rediscovered the term 

system dynamics in a course on operations research (16) in the context of human systems. It 

showed me how to represent invisible relationships that drive decisions in organizations and 

create an experimental process to find ways to overcome problematic behavior.  

It should be recognized that feedback maps and the stock/diagrams representing the 

computational process have different levels of aggregation. Forrester highlighted in his principles 

of systems that a feedback loop must involve one or more stocks, which also implies the level of 

aggregation of a feedback map can vary. Engineers devised the block diagrams of integrators to 

represent feedback control process in engineering systems, but these integrators lose sight of the 

discernable plumbing of stocks and flows (17), thus also becoming a step removed from an 

intuitive and verifiable representation of the system. Explaining feedback existing in systems of 

differential equations is even harder as stocks become implicit and the feedback process must be 

inferred from abstract eigenvalue metrics, i.e., if you are a math wizard . No wonder descriptions 

of feedback existing in constructs described by differential equations ranges between rare and 

hazy. 



Representing feedback in a computable stock/flow model 

Mapping a stock and flow map to causal feedback diagram offers many problems  even in 

system dynamics (14), since the two representations are maps of different but related 

characterizations of the system structure (18). The feedback map articulates the understanding of 

the behavior as it arises from structure; the stock and flow structure creates a computable model 

whose behavior can be obtained through computer simulation. Unfortunately, the relationship 

between the two is often left to intuition that can lead to multiple interpretations of the behavior 

of a stock and flow model, which negates the requirement of uniqueness of a theory.  The 

extended use of the two representations in isolation from one another has even led to a separation 

between system thinking and system dynamics.  The former is limited to qualitative explanations 

and the later focused on computer simulation, although the two must go hand in hand (19). 

The two representations must be seen as different views of the system and the relationship 

between the two must be clearly delineated. A stock/flow model is an intuitive representation of 

the integration process carried out by the computer, while the feedback map is a mental model of 

the aggregate information relationships explaining system behavior. Thus, in a computer model 

of the integration process, the feedback diagram must show relationships between clusters of the 

stock/flow structure rather than between each element of it. And the relationship between the two 

must be unique and easily discernable. 

The relationship between a feedback map and computable stock/flow model can be illustrated by 

programing a one stock model using the hierarchy in Stella software. Figure 5 showes a 

simplified version of the population model of Figure 4.  

 

 

Figure 5  Stock/flow structure of the simple population growth model. 

The inflow in Figure 5 has an information link going from population to births, but it designates 

a policy that computes a flow into the stock. It creates a feedback effect, but not an information 

path a feedback loop must represent. The feedback effect associated with the outflow is even 

more confusing. An information link connects the stock to the policy, but the outflow it creates 

does not even give the appearance of feedback in view of the direction of the outflow. Forrester 

talks briefly about feedback loops in Chapter 4 of Principles of Systems (18). The two relevant 

principle he states are summarized below: 

Principle 4.2-1. Decisions always occur within feedback loops. 

Every decision is made within a feedback loop. The decision controls action which alters the 

system levels which influence the decision. A decision can of course affect multiple feedback 

loops.  

POPULATIONBIRTHS DEATHS

FBR
FDR



Principle 4.2-2. Feedback loop — the structural element of systems 

The feedback loop is the basic structural element in systems. Dynamic behavior is generated by 

feedback. The more complex systems are assemblies of interacting feedback loops. 

Principle 4.2-1 describes, how stocks affect flows creating iterative adjustments, while principle 

4.2-2 ties behavior to feedback structure embodied in the information network connecting 

clusters of stocks and flows. Both must be kept in view for explaining behavior and its 

contingencies. Forrester never intended the two to be separated, but the separation arose possibly 

out of the software limitations to connect the two. 

In my interpretation, Forrester construed feedback loop as an information relationship that is the 

basic building block of the system, not as a part of the computable stock and flow structure but 

as a relationship between clusters of structure. Let me illustrate this point by reconstructing the 

simple population growth model of Figure 1as a hierarchy between information relationships and 

computable stock/flow structure. 

Let us construct population, births and deaths as three separate computation sets represented  in 

the stock/flow diagrams if Figure 2 parts a, b and c. 

  

Figure 6(a): Module representing population stock and its associated flows 

 

 

Figure 6(b): Module computing births Figure 6(c): Module computing death

Figure 6  Population model reprogrammed using module/stock flow hierarchy. 

Now, when the structure of the diagrams in Figure 2(a), 2(b) and 2(c) is placed in different 

modules, the top layer showing information relationships between modules will generate a 

feedback map making no distinction between computable elements of the model. It will display 

the feedback loops entirely created by information links as shown in Figure 3. The information 

feedback that exists between clusters of the computable stock/flow sub-models is shown as the 

relationship between the modules containing those clusters.  
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increase decrease

BIRTH
RATE.births
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deathsFDR



 

Figure 7  Information relationships in the simple population model generated in the top layer of Stella  

Another simple example is a simple CO2 cycle model shown in Figure 8. It contains a draining 

process driven by a goal seeking negative feedback loop and a tipping point structure driven by a 

positive feedback loop containing a nonlinear relationship. The nonlinearity results in two 

equilibria, one of them unstable, which creates a tipping point making the efficacy of policy 

interventions path dependent. Yet, these feedback loops are not evident in this map and must be 

left to imagination. However, when the flows, the stock and the overload condition are 

represented by separate modules containing computable clusters of icons for each as shown in 

Figure 9, the information relationships between them clearly generate the coupled feedback 

loops shown as the module map of Figure 10 that explain the behavior of this system.  

 

Figure 8  Simple CO2 cycle model  
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Figure 9  Modules for inflow, stock, outflow, and overload in the simple carbon cycle model  

 

 

Figure 10 Module map giving feedback relationships between computable clusters of Figure 5 

 
A feature in Stella allows you to place signs on the information links in the stock/flow model, 

which I think is anomalous since this diagram does not define feedback loops as information 

relationships that Forrester surmised. Designating polarity makes sense only in the feedback 

loops shown in the map layer of the software. 
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Forrester’s pioneering use of feedback/stock-flow hierarchy 

Forrester recognized the hierarchy between feedback loops and computable stock/flow structure 

from the inception of his modeling practice and it appeared both in his hand-drawn diagrams and 

the equation clusters of his models. Figure 7a shows an original diagram Forrester created to 

articulate the feedback structure of his market growth model (20). His feedback map represented 

relationship between subsystems of his model, each consisting of computable stock/flow 

structure. Figure 7b shows the top layer of Forrester’s market growth model I programmed using 

the module hierarchy in Stella software. Each variable in this top layer is an aggregate 

representation of its underlying computable subsystem. Through this hierarchical relationship, it 

becomes possible to unambiguously tie the feedback map with the stock/flow structure. 

 

Figure 11a: Feedback loops connecting 

Subsystems in Forrester’s market growth model. 

Source: (20) 

 

Figure 11b: Sector map created in the top layer of 

Forrester’s model programmed in Stella software. 

Each module in this layer is linked with its 

respective stock/flow structure. 

(Forrester’s model reprogrammed by the author

Figure 11 Feedback map representation between model sectors in Forrester’s Market Growth model 

Articulating the relationship between the feedback map and the computable model was a 

challenge when our software presented models in flatland, but the possibility to create 

hierarchical views has made it possible to relate the aggregate feedback map of model sectors to 

detailed stock and flow structure, which is of great value for organizing the model as well as 

explaining its behavior.  

Figure 8 shows the stocks, flows and other icons, and the information links connecting them 

within each aggregate variable in Forrester’s feedback map shown in Figure 7. Forrester is quite 

clear about what each representation means and how are the two intertwine. Stocks and flows are 

parts of the computable model of the system, while feedback loops are formed by information 

relationships between the clusters of computations in this model, and they create the dynamic 

behavior arising out of the system. He surmised the more complex systems to be assemblies of 

interacting feedback loops (18). Without the benefit of having an explicit way to represent the 

relationship between feedback loops and the stock and flow structure, he organized his model 

equations into clusters that were connected by information feedback. 
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Production capacity       delivery delay 

 

Figure 12 Stock and flow structure underlying the feedback maps of Figure 7 

As Forrester’s models grew bigger, the feedback maps representation became less explicit, 

perhaps due to software limitations. For example, Forrester explains the behavior of his model in 

his World Dynamics (21) book using narrative alluding to the feedback relationships shown in 

Figure 9, which is not coincidental. This map appeared when I programmed his world3 

DYNAMO equation clusters into modules in Stella software.  

The aggregate feedback organization, although not as explicitly stated as in his market growth 

model, was now implicit in the way he organized the Worls3 model equations into sectors. This 

organization came from his dynamic hypothesis whose variables were aggregates of his model 

sectors each containing computable stock/flow structure. 

The stock and flow structure residing in each module constructed from Forrester’s equation 

clusters is shown in Figure 10. 

 



 

 

Figure 13 Top layer feedback map of Forrester’s World3 model sectors programmed into modules  

 

 

Figure 14 Forrester’s DYNAMO equation clusters of World3 representing its subsystems 
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Perhaps Urban Dynamics (22) was the largest published model Forrester constructed. I am 

excluding the System Dynamics National Model (SDNM) as it remained unpublished. My 

colleague Karim Chichakly and I tried to reconstruct its equation clusters into modules and, in 

our first attempt, arrived at the module map shown in Figure 11, which is obviously useless as an 

explanatory instrument. Karim then attempted to organize the equation clusters into a two-level 

hierarchy of modules as Stella allows multi-level hierarchy. This reorganization created the 

module map shown in Figure 12 in the top layer.  

 

 

 

Figure 15  Module map of Urban Dynamics equation clusters. 



 

 

Figure 16 Urban Dynamics equation clusters programmed into two level module hierarchy 

Using a multi-level hierarchy will call for creating dynamic hypotheses at the multiple levels of 

feedback pyramid so created, which further helps explain behavior at various levels of 

aggregation in a system. For example, in Urban Dynamics, Workforce comprises of the 

subsystems shown in Figure 12(a); Businesses in 12(b) and Housing in 12(c) 

 

 

Figure 17(a): workforce subsystems 

 

 

Figure 17(b): Businesses subsystems 

 

Figure 17(c): Housing subsystem 

 
Figure 17 Module maps within modules in Forrester’s Urban Dynamics model of Figure 12 
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Since the feedback map explains the behavior generated by the stock and flow structure in terms 

of the information relationships between subsystems of the model rather than between each 

variable, the anomalies created by exactly mapping one into the other are moot. We are better off 

understanding the hierarchical relationship between the two representations of the system instead 

of being caught up in the problem of trying to exactly map one representation to the other. 

Degree of aggregation in feedback maps 

The examples of relationship between the feedback map and stock flow structure in the 

preceding sections are vastly different with respect to the level of aggregation of the stock-flow 

structure represented in the feedback maps. The variety of the levels of aggregation represented 

in these maps implies there is no set rule defining the level of aggregation between feedback 

loops consisting only of qualitative information relationships and computable stock/flow 

structure, which is an important finding. It is sometimes recommended that the feedback map 

might be conceived as a relationship between stocks, but this can truncate causal information that 

might make a feedback map ambiguous. I am in favor of keeping this level of aggregation 

flexible, so a clear dynamic hypothesis can be formulated and tied to the computable model. 

Stella allows for a multilevel hierarchy and I encourage using it when representing complex 

models if they cannot be avoided even after having sliced the problem to identify a pattern of 

interest subsumed in the historical behavior (23). 

Representing expectation formation and supply lags 

Notwithstanding the complex mathematics used in economics for expectation formation, 

Forrester showed that perception that drives expectations, is really a moving exponential 

average. The weighting function of this average is determined by the order of the averaging 

process. He also created macros for representing perceptions that are an important part of 

managerial decision-making.  

Supply lags appear as changes arising from managerial decisions that do not instantaneously 

translate into changes in the supply lines but are subject to process delays. The structure of these 

supply lags, though mathematically equivalent, is slightly different from perception formation. 

Hence, separate macros have been created for representing supply lags. Expectation formation 

and supply lag macros will be discussed in detail in Chapter 3 in the context of managerial 

decision-making. 

Replacing linear policy recipes with system thinking metaphors and 

feedback control 

Policy, especially in the public domain, has invariably been driven by two inputs: a) observations 

and measurements that describe the problem as a snapshot, and b) linear policy recipes striving 

to overcome what is discerned in the snapshot. Observations and measurements are also widely 

fed into complex forecasting instruments generating non-verifiable futures that still inform linear 

policy recipes. Forecasting is driven by simple or complex functions of past trends and in all 

almost all cases, its use amounts to using what is called derivative control in engineering without 

an anchor, which can be very destabilizing (24, 25). 
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Forrester has often stated his belief that a small number of pervasive generic structures can 

describe the majority of real-life situations (26) The ubiquitous structures he developed include 

Advertising (27), Market Growth (20), Industrial Dynamics (28), Urban Dynamics (22), and 

World Dynamics (21). The former two describe aspects of corporate growth that many 

organizations wrestle with. The latter four, together with his unfinished National Model represent 

a restructured theory of economic behavior that can be applied to managing firms, markets, 

regions and economies (29), (7). Such generalizable models of policy paradigms at a 

metaphorical level, drawing from situations in everyday life as well as distant history, that should 

serve as pointers to the latent structures needed to be targeted by policy, which I’ll later attempt 

to catalogue in this book. 

 

As for policy implementation, there is a need to draw from engineering practice that extensively 

utilizes ex post error to achieve fast and smooth adjustment to a desired condition using feedback 

control. The classical control process is often denoted as PID (for proportional, integral and 

derivative) control and a combination of these functions (often determined experimentally can 

reliably achieve the desired path of adjustment to a goal. Such a regimen can also be used to 

drive economic and business decisions to achieve desired performance and should replace 

authority driven policy implementation process. Indeed, such a control process was proposed by 

Phillips (12) and has become the center piece of a maverick thread in economics sometimes 

called economic dynamics. However, since the practitioners of economic dynamics often attempt 

to calculate optimal weights of the various components of control, it can be applied to only very 

abstract models that may be far removed from reality. Use of PID control in a macroeconomic 

system using system dynamics modeling will be discussed at length in Chapter --- . 

Aging chains (conserved systems) and multiple equilibria 

Most macroeconomic models assume equilibrium that perpetuates over-growth and cycles 

although there have been movements for including disequilibrium over the course of growth. 

Equilibrium is also often seen to signify perfect allocation since Mill discussed his stationery 

state. That is of course a lot of bologna, since there is pervasive experience of societies existing  

in stagnation with widespread poverty (6), banditry and illicit production, (30), decayed 

infrastructure and rampant underemployment (31). 

The structure of such dysfunctional equilibria was demonstrated by Forrester in his Urban 

Dynamics model by using connected stocks for infrastructure and employment shown in Figure 

22. 
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Figure 22 Connected stocks forming aging chains in Forrester’s Urban Dynamics Model 

These connected stocks disaggregated the variables into several categories while conserving the 

total quantity. They also allowed the possibility of both functional and dysfunctional equilibria 

created by the variety of distributions between stocks that could be created by the logic of the 

flows connecting them, that Forrester called policies (32).  

Saeed et al (30) divided the workforce between farmers, bandits and soldiers in their 

metaphorical model of a political economy as shown in Figure 23. 

 

Figure 23 Connected stocks in Saeed’s model of political economy 

This distribution of workforce between these stocks can create a variety of equilibria depending 

on the factors affecting the mobility between them.  Also, a variety of functional and 

dysfunctional income distribution scenarios can appear when the connected stocks of workforce, 

and modern and traditional production infrastructure and its ownership assume different 

distributions based on the policies affecting the flows connecting them (6). 

Such complex aging chains would be difficult to represent using ordinary differential equations 

but are a breeze to formulate using the intuitive calculus of system dynamics. Their inclusion in 

our models can provide the much-needed policy space that will help operationalize economics. 
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Summary 

A derivative is an ex-post computation of historical experience. Thus, a differential equation 

cannot be compared with the related system in the real world. On the other hand, since reality 

integrates over time, a logic that captures this integration process can be easily discerned from 

reality and also compared to it. However, if we were to replace the differential calculus with a 

process that replicated integration over time, the computational detail of it would be very tedious 

and you will definitely need a digital computer to carry out the integration in the system so 

surmised. Digital computers of course did not exist when the elegant art of calculus was created. 

Now that we have computers that can perform the tedious computations, why not adopt a 

realistic integration format that can be verified and also intuitively understood? 

Forrester devised the bathtub – faucet – drain representation that we have adopted in system 

dynamics. This format replicates in an intuitive way how systems move over time. It can be 

inferred from reality and the models created in it compared to the real constructs and thus 

verified. Also, our explanatory tool - the feedback loops are an integral part of this 

representation. This takes the guessing game out of our explanations of the model behavior. 

Forrester’s bathtubs and faucets are an intuitive way of representing calculus that is the 

cornerstone of system dynamics. 

Although economics started as a descriptive theory, we began representing it using differential 

calculus and since verification of differential equations is difficult, the verification process was 

really dispensed with. The abstract models created with calculus gave birth to the concept of 

rational agency that underpins modern theory. Albeit, the world is run by managers, not rational 

agents. Manager, an agent in a bounded rational role is the actor in Forrester’s work on economic 

issues. He aspired to replace rational agency-based economics with manager-based economics – 

a version of economics that managers can relate to, understand, and practice. 

Forrester’s Industrial Dynamics (28) presents a manager-based theory of firm and his 

unpublished National model – a model of the macroeconomic system is an extension of his 

model of a firm since an economy is an aggregate of firms. In these models, the decisions are 

made by down to earth managers who might be trying to balance everyday firm operations like 

maintaining reasonable levels of inventory and workforce to produce quantities needed for 

meeting incoming orders. Other managers try to balance production capacity with their 

perception of what is needed. Problems of inability to meet goals (steady-state error), overshoot, 

instability, and sluggishness in adjustment arise out of the interaction of the bounded rational 

policies the managers follow.  

The representation of perceptions, expectations and supply chains is clumsy and overly complex. 

The possibility of multiple equilibria arising out of connected stocks as in an aging chain has 

been rarely attempted due to the computational complexity. All these methodological challenges 

can be resolved by replacing the abstract calculus used in economics by an intuitive stock and 

flow structure that mimics integration in reality. Consequently, verifiable theory that is built 

around managerial decisions can be constructed. The use of system dynamics method is therefore 

essential to operationalizing economics. 
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