Greetings, my name is Dr. Crowthers and I will accompany you on a wonderful STEM-filled journey next academic year (and hopefully beyond). This is a journey that I hope you will enjoy both in class and outside of class. As with any journey (and significant projects), there will be good and adverse times. However, you can minimize the tough times with a little preparation. With this in mind, I want to activate your mind, keep your skills sharp, and introduce you to parts of the curriculum that will benefit your project development and implementation. At first glance, this summer assignment appears to be a lot of work. IT IS NOT! I am getting you started on the brainstorming many prior students suggested would be most advantageous.

The Purpose of the Summer Assignment is:

- To expose students to material/concepts/skills required in the curriculum.
- To provide an opportunity to get a leg up in your STEM planning (either in a research, engineering, or mathematics project)
- To offer the opportunity to show what you know, your creativity, and attention to detail.

Deliverables for this Assignment:

1: A FlipGrid video by July 1st
2: 3 articles to be read and summarized (due dates: July 11th, July 28th, August 11th)
3: Brainstorming three initial ideas for your STEM project

Part I: Formal Introduction:

We are going to spend a lot of time together next year, so I want to learn a little bit about you. Your first digital assignment is to upload a flip-video by July 1st successfully. This video is also an excellent opportunity to introduce yourself to your classmates.

Consider these suggestions:

- This is a professional communication, similar to what you would be sending to a college professor or lab head, so check your grammar and sentence structure.
- Make the Subject: ‘STEM Introduction to (YOUR NAME)’
- Introduce yourself:
 - What do you like to do? How would you characterize yourself? Sending school?
 - Do you have a job or other significant time commitments outside of academics?
 - Was there anything that you liked about your earlier STEM/science classes?
 - What worked for you in terms of understanding the material in your previous science classes?
Mandatory: What are you looking forward to the most in STEM (the independent research project and the Assistive Technology project)? Personal goals for STEM?

What are you most anxious or worried about next year? Science class? Group work?

End the video with a formal closing.

Please email me at kcrowthers@wpi.edu and state that you have uploaded your video. I am also planning on having in-person STEM Brainstorming over the summer, so your email is crucial for any updates (more information at the end of this assignment).

Part II: Independent Research Project Preparation

"In life, you are judged by how good your questions are.”

Robert Langer, MIT

For this part of the Summer Assignment, you will be doing some brainstorming for ideas/direction in your STEM project. It is essential to keep these ideas and your progress in a notebook to refer back to. Date your entries. Brainstorming is an essential first step in doing your independent research project. These methods will help you narrow down your ideas from a broad topic to something that is more feasible to tackle in the time we have. Coming up with a narrow idea will provide direction for your project. Doing some brainstorming early on may make the difference between obtaining a highly coveted place in a research lab (as an example) and searching for weeks for an available spot. Please contact me if you have an existing project that you would like me to consider. If you are considering a position in a research lab over the summer and would like to use this work for your independent research project, reach out to me for a discussion (kcrowthers@wpi.edu).

A: Brainstorming for Questions

The goal of this exercise is to generate a lot of ideas. If you don’t love every idea, DON’T WORRY! You can star the ideas you like. We will come back to them later.

The first step in a project is to identify a problem or research questions. This requires narrowing the scope to facilitate question generation. It is much easier to ask a question or build a product around the chemistry of painting (as an example) than it is to ask a question or build a product around painting in general.

1: Select a challenge. There are two paths that can be used to narrow down a project; a direct observation or narrowing down a topic from a general interest. We will be using both methods. Using a notecard, take note of at least 5 patterns and at least 10 annoyances that you encounter. These observations can occur over the course of a week, month, etc but should be something that you observe or have experienced. These observations can provide some specific directions for a project idea. You could even get some ideas from YouTube or non-academic situations; however, the best ideas come from your environment or family. Please take a picture of your notecard and place it in your notebook.

Additionally, you can identify a project direction by making a list of general topics that you are interested in and using brainstorming techniques to narrow your ideas.

1 Any bound notebook with your name on it will be sufficient. Engineers, scientists, and mathematicians typically keep a bound notebook handy for ideas that come at random times.
Brainstorming is a way to generate a lot of ideas and then choose the ones that are feasible for a research/engineering/mathematics project (with some modifications). Some ideas will be great, some will be bad, and some will be really, really bad. On second thought - most will be bad. But that is OK! Many of these bad ideas can be turned into a great idea (and unique) with some modifications. The SCAMPER technique (https://www.bitesizelearning.co.uk/resources/scamper-model-creativity) is a great way to turn what you think is a bad/impractical idea to something great. **This phase of a project is NOT THE TIME to critically evaluate the efficacy of any idea!**

Some of the rules of brainstorming are (Design Thinking for Educators, IDEO)

1. Defer judgement
2. Encourage wild ideas
3. Build on the ideas of others
4. Stay on topic
5. One conversation at a time (if done in a group)
6. Be visual
7. Go for quantity

Ask yourself if any of these ideas/areas in your table or notecard make your heart beat fast. If it does, these are probably good candidates to keep in mind and engage others in thinking about.

The second brainstorming method we will try is called a **pie diagram**. In a pie diagram, the broad interest is placed in the center. The second smallest circle will contain topics that are associated with the central idea but with a narrower focus area. As you work your way outwards, you should think about offshoots from that idea. There are two examples below. One has been completed. One has been partially completed.

Q: What types of natural spices can prevent the adherence of coronavirus on cells?

<table>
<thead>
<tr>
<th>Table 1: A template to organize your thoughts and observations on the notecard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobbies</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
When you fill in your pie diagrams, challenge yourself to look for overlaps between your interests. For example, if you like painting AND math AND computer science, could you develop a program to statistically analyze something about the brush strokes of your favorite Renaissance artist? If you are interested in painting AND assistive technology, could you find a way to make painting accessible to individuals without hands? **Look for connections** and think outside of the box. It is often at the intersection of ideas where a great project lies.

Fill in **three pie diagrams** (like the diagram below and attached at the end of this description). You may want to use separate paper for each diagram. Put a topic you are interested in at the center. That topic can be from question 1 (a direct observation from your notecard) or something completely different, like a hobby that you want to investigate further (from the table above). Add connected ideas as you move to the outer circles. You can even connect different pie diagrams together through common themes/threads.

2: **The next step is NOT to look for answers but to ask questions.** Brainstorming for **QUESTIONS** makes it easier to venture into uncharted territory (Gregersen, 2020). In 5 minutes, write as many questions down (around the outer ring- as shown in the example above).

3: **Invite a few other people** to help you consider the challenge or topic from fresh angles. Give a brief introduction (2 minutes- MAX) of the task and provide the brainstorming rules (above). In 5 minutes, ask them to add as many **QUESTIONS** onto your pie charts as possible. Write these questions down **VERBATIM** on the pie chart. As you are recording, add additional questions on your own. Bringing in others (who have no direct experience with the problem) can provide a unique perspective that can broaden your ideas and knowledge base. This is a crucial
component of the brainstorming process. Asking others to participate helps to bring in empathy and foster idea generation (Gregersen, 2018). You will also be brainstorming with others in your class.

Some guidelines might help in generating questions:

- **A:** making random associations or taking on an alternative persona can help unlock new perspectives.
- **B:** OPEN Questions (ones that are more cognitively complex) are better than closed questions (or ones that have a definitive answer or recall). How might you change a closed question to an open one?
- **C:** Short and simple questions are best to get people thinking.
- **D:** Don’t pose questions aggressively. Remember the 1st tenet of brainstorming- Defer judgement.
- **E:** Don’t propose a solution disguised as a question.

4: Check-in:

https://forms.gle/jLsyZZYM6mdx4e13A

5: Do a post-mortem on the questions:

Identify some of the new pathways uncovered during the question session. Select a few that intrigue you and expand on these into your own set of follow-up questions. Remember to keep these questions open, short, and not posed to produce an answer. A great way to continue the questioning would be to utilize Sakichi Toyoda’s “5 Whys” (https://kanbanize.com/lean-management/improvement/5-whys-analysis-tool). This method helps to get to the root of a particular problem or stumbling block. For instance, if a customer states that they have an untuned bagpipe, the “why” question would be “Why do you think your bagpipes are out of tune?” or “Why is this important?” Then, continue asking the “why” questions, typically for 4 more times.

You should be considering at least three ideas and moving them forward for your STEM project. If you plan to attend any of the in-person brainstorming sessions, you should **bring at least one of the ideas to build on.**

Part III: STEM Reading:

Narrowing down ideas for a research project requires reading and research. This part requires keeping your progress in an ELECTRONIC NOTEBOOK (either Google Docs or Microsoft Word), reading 3 sources (based on brainstorming), and writing a summary:

Article Summary #1 (due- July 11th): https://forms.gle/VCCuGKiPEGRm1qop9

Article Summary #2 (due July 28th): https://forms.gle/SEXfCNTNoxwZ7cQk7

Article Summary #3 (due August 11th): https://forms.gle/d2tgSgDTeTLrrAyo8

Any questions, email me (kcrowthers@wpi.edu).
The chosen articles should provide you an opportunity to start thinking about your areas of interest. Diving deeper into your idea/problem (at least deep enough to develop questions or needs) requires you to do some reading from various reputable sources (Wikipedia is NOT a reputable resource 😱). A good place to start is the science news sites that contain abbreviated science/engineering stories. As an example,

Quanta Magazine (www.quantamagazine.org)

Live Science (www.livescience.com)

phys.org (phys.org)

As you begin to narrow your topic, you will need to do some research in scientific journals and professional publications. Sites like:

Science Journal (www.sciencemag.org)

Proceedings of the National Academy of Sciences (PNAS) (https://www.pnas.org/)

Nature (www.nature.com)

IEEE (www.ieee.org)

Proceedings of the AMS (https://www.ams.org/publications/journals/journals)

All sources have peer-reviewed articles that will help guide you on what is currently thought of in the field. Part of this assignment is to do some reading in

1 Science news sites
1 scientific/professional publication
1 choice from above

Write one paragraph for each source summarizing the article and how it pertains to your prospective idea(s). I understand that in the previous section, I have asked you to pursue at least 3 ideas for your STEM1 project. For this reading assignment, choose an idea that makes your heart beat faster to complete your reading. This part of the assignment is practice and does not mean you have to choose this idea for your project. You will be completing additional research in the other areas when we return to school.

We will be reviewing tips and techniques on how to effectively read a technical/scientific article during the academic year. If you need additional guidance ahead of time, please see my website here: https://bit.ly/39B2Jgl. I will be putting up crash course videos throughout the summer- stay tuned.
Part IV: Brainstorming Session with your colleagues:

I will be scheduling in-person office hours over the summer so please keep an eye on your email for an invitation. **These meetings are optional** and are great opportunities to share your ideas and get your colleagues’ feedback. All sessions will be focused on brainstorming, getting to know your fellow classmates, and advancing your ideas for a STEM project. The first session will include effective time management tips and techniques from Ms. Ludes (MAMS Director). If you attend, it is crucial that you come to these meetings prepared with at least one idea to build on. With each of these sessions, examples of brainstorming from past projects will be provided.

Open Office Hours:

In-person session at MAMS: July 28th, 3-6pm
 August 11th, 2-4pm

The in-person brainstorming sessions will be held in the Brickyard at MAMS, which is indoors.

Citations:

Figure # and Caption TITLE. Please provide a detailed figure caption that includes the date and time you completed this. Information (including when, where, and the date/time) can become important in determining whose ideas came first and who might get credit.
Figure # and Caption TITLE. Please provide a detailed figure caption that includes the date and time you completed this. Information (including when, where, and the date/time) can become important in determining whose ideas came first and who might get credit.
Figure # and Caption TITLE. Please provide a detailed figure caption that includes the date and time you completed this. Information (including when, where, and the date/time) can become important in determining whose ideas came first and who might get credit.
Part II: Build Something

The goals for this design challenge are to:
1: Teach students the importance of fully understanding the problem
2: show that working prototypes can be created with simple materials in a short time frame
3: reinforce the importance of testing your device prior to its use and making comparisons to a benchmark(s)
4: learn to measure functional performance using statistical tools
5: learn to work within specific constraints (amount of material and shapes of basic building blocks).

In this challenge, you will use common household items to create an artifact. You are given design specifications and material constraints. The completed artifact will be demonstrated in class. Please come to class prepared. Make sure you follow the guidelines (outlined below) on how to keep an engineering/science notebook.

Create an artifact with at least one function (that you define) that can be measured. Remember the old Biology saying- “Form follows Function”. The artifact must be made of only squares (2” by 2”) and triangles (2” equilateral). The total amount of material used for this challenge is 11” by 11”.

Evaluation of the artifact:
0 pts: Artifact was not completed.
2 pts: Artifact did not meet the design specifications.
3 pts: Artifact met the design specification.
4 pts: Artifact met the design specification with a demonstrable function.
5 pts: Artifact met the design specification with demonstrable function (s). The designer presented sensible strategies for measuring the function (s) including uses of appropriate statistical tools.
Extra point: Voted best design by the class (optional).

Crash Course in Keeping an Engineering/Science Notebook:

1- Make sure all entries have a title, date, legible, and are written in ink
2- include a table of contents at the beginning
3- your name and contact information is located on the outside
4- entries are sequential and any blank space is crossed out
5- written with sufficient detail that someone could recreate the work