

http://tinyurl.com/WPITrussMe

A modified approach to POE Unit 2

Welcome!

Brett Kisker

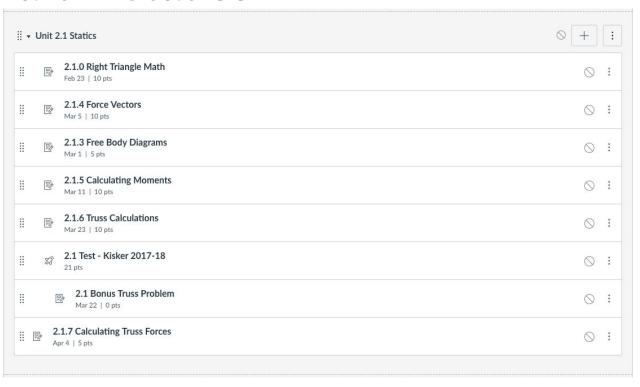
Twitter: @iTeachPLTW

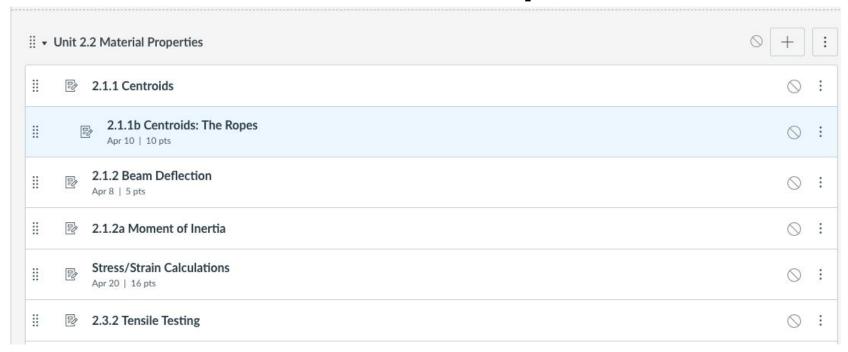
brett.kisker@lps53.org

IED Master Teacher

Liberty North High School

Liberty, MO





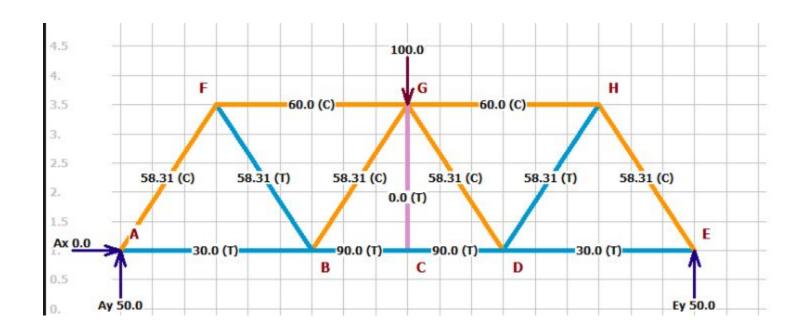
Part 1: Statics

Part 2: Material Properties

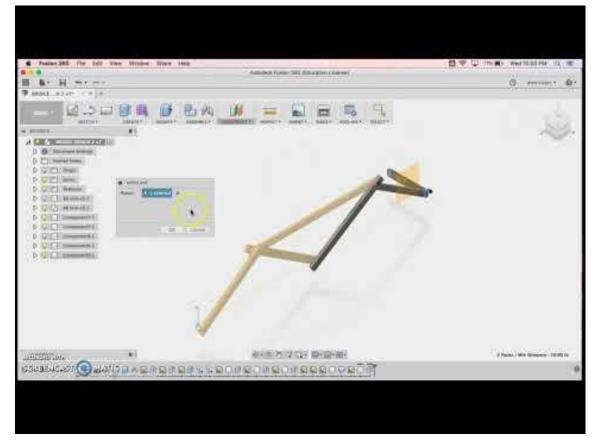
Part 3: Bridge Design

ii	2 .	.1.8 Bridge Project Instructions and Overview	\Diamond)	:
ii	Ē	2.1.8 Initial Research Apr 25 15 pts	\Diamond)	:
ii	E e	2.1.8 Bridge Justification Apr 27 25 pts	0)	:
ii	E	2.1.8 Construction & Testing May 14 50 pts	\Diamond)	:
::	E .	2.1.8 Bridge Evaluation May 15 20 pts	0)	:
::	=	2.1.8 Bridge Reflection May 15 20 pts	\Diamond)	:

Description	Symbol	Value	Unit	Information Source	
Member Base	b		in	Dial Calipers	
Member Height	h		in	Dial Calipers	
Cross-Sectional Area	Α		in^2	EXCEL FORMULA: base x height	
Tension Capacity, Spruce No. 3, 2" and wider	Ftn	1012	psi	Look Up Online	
Moment of Inertia (Vert)	lxx		in^4	EXCEL FORMULA: (base x height^3)/12	
Allowable Tension Force	Ft		lb	EXCEL FORMULA: Cross-Sectional Area x Tension Capacit	

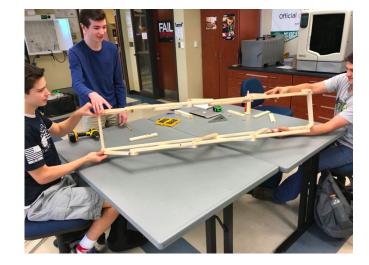

Note that member length was not included in these calculations. That's because it doesn't have an appreciable effect for members in tension!

Calculations and graphs for members in **compression** are on the other tab.


Strength Calculations

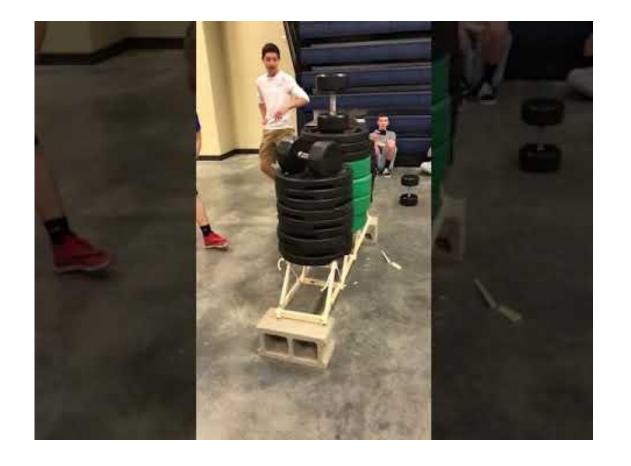
F			turning and the	
Description	Symbol	Value	Unit	Information Source
Member Base	ь		in	Dial Calipers
Member Height	h		in	Dial Calipers
Member Length	1		in	Ruler/Meter Stick
Cross-Sectional Area	Α		in^2	EXCEL FORMULA: base x height
Moment of Inertia (X)	lxx		in^4	EXCEL FORMULA: (base x height^3)/12
Moment of Inertia (Y)	lyy		in^4	EXCEL FORMULA: (height x base^3)/12
Ultimate Compression Stress Capacity, Spruce, No. 3, 2" and Wider		2340	psi	(From an online source)
Ultimate Compression Force Capacity			lb	EXCEL FORMULA: Compression Capacity x Cross-Sectional Area
Effective Length Factor	K	0.65	(fixed-fixed)	(From an online source)
Slenderness Ratio, Base	KI/b			EXCEL FORMULA: K value * panel length / member base
Slenderness Ratio, Height	KI/h			EXCEL FORMULA: K value * panel length / member height
Modulus of Elasticity	Eminn	1056000	psi	(From an online source)
Buckling and Crushing Factor	c	0.8		(From an online source)
Euler Critical Buckling Stress for Columns about x-axis	FcEn,b		psi	EXCEL FORMULA: 0.822 x (Mod of Elasticity) / Slenderness Ratio, Base^2
Euler Critical Buckling Stress for Columns about y-axis	FcEn,h		psi	EXCEL FORMULA: 0.822 x (Mod of Elasticity) / Slenderness Ratio, Height*
Column Stability Factor about x-axis	Cp,b	#DIV/0!		EXCEL FORMULA: Too long to show here
Column Stability Factor about y-axis	Cp,h	#DIV/0!		EXCEL FORMULA: Too long to show here
Adjusted Ultimate Compression Force Capacity about x-axis	Fc,b		lb	EXCEL FORMULA: Cp, b times Fc, max
Adjusted Ultimate Compression Force Capacity about y-axis	Fc,h		lb	EXCEL FORMULA: Cp, h times Fc, max
Calculations for r	nembe	rs in tens	ion are	on the other tab.
Definitions (For Your Information)				
"Ultimate" is the starting point for the design in the real world. In the re	eal world,	they multiply t	hese values b	y a "factor of safety" before building.
Ultimate Crushing Force = The force at which the wood will crush (n	o bucklin	g)		
Euler Critical Buckling Stress for Columns = slightly modified Eule	r buckling	equation, spe	cific for rectan	igular sections; this is the stress at which the column will buckle
Column Stability Factor = defines the column curve or column equal	tion about	an axis		
Adjusted Ultimate Compression Force = Force at which the column	will fail in	compression	due to bucklir	ng about an axis

Strength Calculations



Use the Spreadsheet to Determine Truss Strength in MDSolids

3D Modeling - To figure out your cuts!


Construction

Finished Product

Testing

Testing

Thank You!

Brett Kisker

Twitter: @iTeachPLTW

brett.kisker@lps53.org

IED Master Teacher

Liberty North High School

Liberty, MO

