Department of
Physics

Modeling a pendulum beyond the small
angle approximation

114X

Last Edited September 20, 2022

Lab Objectives

Intermediate modeling skills — Write code to numeri-
cally solve the actual pendulum oscillator

Explore the limits (or constraints or variables or op-
tions but whatever sounds best to you) of friction,
initial angle, time steps

Differential Equations in coding —Write code to com-
pare this actual solution to the small angle approxi-
mation

Lab Equipment

e Computer.

Theory

Originally written by Edward Jarvis. Any mistakes within
are due to Dana — so please email her if you have comments
or corrections.

You’ve been taught that the solution to the pendulum
oscillator is:

O(t) = Bpe "cos(wt + 6) (1)

However, this solution is for the simplified differential
equation:

Ot) = —pod — %@ 2)
This simplification is from the Taylor series approxima-
tion of the sine function, the full differential equation is as

follows:

(3)

This equation is solvable only by using functions called
elliptic integrals. Rather than go through the laborious
mathematics to solve this equation analytically, the goal of
this lab is to solve the equation numerically.

Ot) = —uo — %sm@

Procedure

To solve the pendulum oscillator use python, with the pack-
ages numpy and matplotlib.pyplot. You will want to initial-
ize the various parameters of your system: gravity, length,
friction, initial angle, and initial velocity. You will want to
establish the total time, time step (start small!), as well as
define various other parameters (like the angular frequency)
in terms of these parameters.

You will then want to define your differential equation
as such in python:
def get_theta _double _dot(theta, theta _dot):

return -mu * theta _dot - (g/1) * np.sin(theta)
Next, you will want to solve the equation. Think about
what it means to ‘solve’ a differential equation; you want
to know all of the angles at any particular time. Since
the initial angle was defined, you just need to update that
value for every time step. The simplest way to update
that angle is to add the amount it would have moved by in
that time step. That amount is simply the angular velocity
multiplied by that time step.

In addition, you’ll need to update the angular velocity
in the exact same way, by adding on the angular acceler-
ation multiplied by the time step. You will calculate the
angular acceleration using the differential equation. Then
you will append the theta value to a list so you can con-
struct a list of numbers for plotting.

Finally, you will plot your data. You will then plot the
theoretical equation you learned in class. You will want to
run your code and vary several different parameters. What
happens when friction is very high, very low, or zero? What
happens when the initial angle is xvvery large, very small,
or exactly pi radians? What happens if your time step is
too large?

Lab Objectives

e Several graphs of angle vs time for each case (see end
of procedure for more details)



e Discussion of differences between small angle approx-
imation and the numeric solution

e Discussion of timesteps and errors that can arise

e Blooper graphs: trials that did not work or seemed
to make graphs that were nonsense

If youd like to try to model a double pen-

dulum for some extra credit, see the github page:
https://github.com/wojciechmo/double-pendulum
Acknowledgement

Thank you to Ed Jarvis for writing this lab. Any good
things in this lab are his, any mistakes are from re-writes.



