23
24
25
26
27
28
29

39
40
41
42
43
44

Groovebox: Exploration of drum groove generation from hand
percussion

Anonymous Author(s)

Figure 1: Two synthesisers on a table, 2019.

Abstract

This paper introduces Groovebox, a percussion DMI that takes
an active role in the creation and performance of music. Users
and the device interact in a call-and-response format, similar to
some jazz improvisation styles, where both entities are inspired
by the other’s performance while still contributing creatively to
the piece.

Keywords

ML, Generative Music, DSP, Onset Detection, Variational Au-
toEncoder

1 Introduction

Digital Music Instruments (DMIs) are often limited to responding
to user input. A keyboard, for example, takes user key presses
and translates that into either MIDI messages or sound. The same
is true for electric drum kits, digital synthesizers, and many more.
This means that any musical creativity comes solely from the
player (occasionally inspired by algorithms built into the DMI,
for example chord machines or arpeggios), which is often desir-
able if said player has a clear musical idea, but doesn’t afford any
opportunity for collaborative improvisation (like would happen
when playing with others). The player’s technical ability is also
often a limiting factor in musical creation in these contexts, as
virtuosity and control often only comes with long hours of prac-
tice, as is the cost of the DMI, which is often high enough that
the number of people that can afford to use it is severely limited.

We propose Groovebox, an instrument designed with the goal
of being intuitive, expressive, and accessible. In broad terms,
it is a percussive DMI that allows users to improvise in call-
and-response fashion, dynamically responding to user input and
enabling the exchange of musical ideas between the player and
the device. It is designed to be primarily used in the context of
performance, as there is some variability to the responses it forms
based on the player’s input.

To play the instrument, the user drums a rhythm on the top
plate with their hands, and the VAE model generates a corre-
sponding drum beat, which will be played in a loop over MIDI
until another hand-drummed sequence is played. The user can
also apply pressure to the top plate in different ways to modulate
the outputed drum beat in different ways, for example increasing
the volume when more pressure is put in.

In this paper we explore the effectiveness of our onset de-
tection algorithm and the generative model, and qualitatively
evaluate the system as a whole.

This work is licensed under a Creative Commons Attribution 4.0 International
License.

NIME °25, June 24-27, 2025, Canberra, Australia

© 2025 Copyright held by the owner/author(s).

2 Background and Prior Art

DMIs have been an active field of research and innovation for
decades [11]. With the increasing technological capabilities af-
forded by faster processors, more storage, and other technological
innovations, more and more people in both the academic and
commercial world have explored the ways computers can be
used to make music. Computer-based technologies (e.g. digital
synthesizers) use computer programs to synthesize sounds. The
first of these was the Fairlight CMI, which was a keyboard with
an on-board computer [11] [20]. Through the years, computer-
based musical devices have evolved and diversified to include
Digital Audio Workstations (DAWSs), drum machines, sequencers,
and so on [20]. Many of these have an emphasis on portability
and ease of integration into home studios or stage set ups. For
example, the OP-1 is a popular portable synthesizer and DAW
(among other things) with a particular emphasis on having a
small form factor [2], and many ways to integrate computer or
other equipment via MIDI and USB interfaces. The Novation
Launchpad is another popular MIDI controller with compact de-
sign and easy integration with a computer running many major
DAWs [1]. More experimental DMIs also exist, for example "The
Bean," which uses pressure applied to points on a compound
curve to play notes, somewhat like a harp [16].

Robotic musical instruments, which can be defined as "sound-
making device that automatically creates music with the use
of mechanical parts, such as motors, solenoids and gears," have
also had a large amount of development in recent years [17].
These have included player pianos, robotic drummers, violinists,
cellists, drummers, robotic bagpipes, and more [17]. Many of
these robots are performers which play an instrument, but some
act as a musical interface. One example of this is robotic systems
that react to human dance [27].

The study of Human-Robotic Interaction (HRI) and its sib-
ling Human-Computer Interaction (HCI) have been popular for
decades [22] [26]. Within the context of musical systems this has
taken the form of wearable e-textile interactions, gesture-sensor-
based interactions, mobile-device interactions, laptop-based in-
teractions, and more [29] [24]. For haptic interfaces (which focus
on the sense of touch), the interpretation and communication of
emotion (referred to as "affective haptics”) is of particular inter-
est [28]. Affective haptic interfaces can include force and touch
feedback, and data collected for affect detection may be intensity
and duration of interaction, mode of interaction, and so on [10].
Another area of study of emotion communication between hu-
mans and some sort of electronic or electromechanical interface
(especially within the context of DMIs) is parameter mapping,
which is the mapping of various inputs to system outputs [15].
An example of this could be increased pressure on a pad leading
to louder volume. These physical interactions can broadly be
broken up into two categories: ergotic and non-ergotic, where
ergotic interactions are considered to have work exchanged be-
tween the user and the system, and there the system responds

83
84
85
86
87
88
89
90
91
92
93

94

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

NIME °25, June 24-27, 2025, Canberra, Australia

with proportional haptic feedback [6]. An example of an ergotic
system might be a drum, where work is done by hitting the top
membrane is the vibration of the instrument. Ergotic interac-
tions can be further broken down into three sub-interactions:
excitation, where energy is put into the system (e.g. hitting the
drum), modification, where the sound is altered (e.g. applying
pressure to the drum head to change the pitch), and selection (e.g.
choosing which drum to hit at a drum kit) [6]. Some consider
musical instruments to be ones where sounds are produced by
ergotic gestural interactions [6]. As such, when designing a DMI
it is important to consider whether or not one wishes to make the
instrument ergotic or focus on the user interacting with it from a
purely intellectual and symbolic standpoint, and the impact that
will have on the broader user experience.

As stated earlier, there are barriers to entry for any instrument.
This can be not only technical difficulty, but also cost, and many
instruments fall short of the needs of users with disabilities [12].
As such, accessible DMIs have been created with varying goals
from trying to create low-cost open-source devices to better
server a wider base of musicians and lower the monetary barrier,
and the field of adaptive music has grown in pursuit of designing
instruments that serve a broader community of musicians with
diverse abilities [12].

As digital systems have grown able to play a more active and
complex role in music, some researchers suggest that some digital
musical systems can be treated as their own "behavioral objects"
and that the traditional musical paradigm must be re-framed to
include these behavioral objects and the ways they can interact
with their environments [5]. Practically this means considering
that some digital systems might be "composed" in a similar way
to one composes parts of a musical piece (for example in the case
of modular synthesizers), exhibit behaviors in response to some
internal or external state, and have various interactions with any
human (or non-human) actors in the broader musical system.
Another manifestation of this can be seen in generative music
systems, where the digital system itself is a compositional actor
within the process of music composition [5]. Such systems are
their own field of study unto themselves, and generally have a
similar structure: they may have some overall narrative structure,
external interaction, or other input that informs the composition,
which consists of melody, harmony, rhythm, and timbre, which
are often encoded as a series of notes [14]. Often these systems
have been built using systems like MaxMSP or Pure Data [5], but
in recent years machine-learning has been an increasingly pop-
ular tool for generative music, arrangement, and orchestration.
In particular Variational AutoEncoders (VAEs), which take an
input, compress it down into a latent-space representation, and
then reconstruct the input from the latent-space representation
have shown to be well-suited for this task [25]. This is because
the latent-spaces can be shaped during model training to resem-
ble human-creatable representations of information, from which
the model’s encoder can generate something that looks like it
could have been from the training data [25]. Google Magenta’s
GrooVAE model was trained on drum groove MIDI data and
had its decoder essentially distill the input into a monophonic
rhythm, from which it then was trained to recreate the original
drum groove [13]. This means one could then input a tapped
rhythm, and get a passable drum groove out of the model [13].

Anon.

3 Requirements

Groovebox was imagined as a percussive instrument that can be
struck or otherwise played with the hands, be intuitive to play
without much prior expertise, compact and modular enough that
it can be thrown in a bag and set up anywhere quickly and easily,
and have a low enough cost of production that it is accessible to
most musicians.

3.1 Gestural Interaction and Input

We envisioned gestural interactions to include both percussive
striking with the hands and sustained pressure on the top plate,
so the device must have some method of detecting both percus-
sive onsets, sustained presses and swipes along the 2D plane of
the top plate. This would necessitate a reliable method of differ-
entiating the two. Force or touch feedback is often necessary for
ergotic interaction, and so the system must have some method
of providing haptic feedback to user interaction. Additionally,
the system should detect where percussive interactions are per-
formed on the surface of the device to allow for variation in
produced sound.

3.2 Visual Design

Two characteristics of design are discoverability (is it possible to
figure out what actions are possible and how to perform them
with an object) and understanding (how is the object supposed
to be used, what do all the different controls do, etc.) [23]. For
the system to be intuitive, it should have both of these, so the
user must be able to understand how to interact with it by it’s
shape, form, and visual design The mappings between gesture
and system output must also be easily understood through the
device’s shape, form, coloring, and so on.

As such we felt it appropriate to draw inspiration from other
hand-percussion instruments (which often have a rim and mem-
brane) by having a visually distinct rim and and center area. At
the same time, however, we also wanted to differentiate the in-
strument enough from preexisting acoustic drums to invite the
exploration of different types of gesture and interaction.

3.3 Portability

For the device to be easily portable, it must be small enough to
fit in a common backpack. As such, it must have a footprint of no
more than 1 square foot and a height of no more than 3 inches.
The device must also be self-contained and require no more than
a single USB cable for power and MIDI data transmission, so that
it can be set up in different locations.

3.4 Use Context

The device is designed to be used on a tabletop, alongside other
DMIs such as synthesizers. It should easily integrate with an
arbitrary home studio ecosystem, or be easy to "slot into" more
temporary setups like on stage.

3.5 Cost and Development Materials

To ensure the device can be used by a broad user-base, the device
must be under $75 USD to fabricate. To further this goal and
ensure the device is as accessible as possible, the source code and
build plans are open-source and free.

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

249

251
252

253
254
255

256

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

Groovebox: Exploration of drum groove generation from hand percussion

4 Design
4.1 Top Plate

The top plate of Groovebox is a triangular sheet with rounded
corners sitting on top of three piezoelectric pressure sensors,
allowing localization of pressure placed on the plate as well as
vibration sensing. Paper pressure sensors [18] [19] were also
considered and investigated, but not selected due to the time
investment required to create quality sensors reproducibly.

The top plate is split into three colored zones to play the kick
drum, snare drum, and hi-hat or ride (selected by toggle switch),
enabling users to play simplified 3-note drum beats which will
inform the two bar, fully orchestrated response from the model.
The rest of the drum kit is broadly categorized to fit within
these three categories: cymbals and other related metals with
the ride/hi-hat zone, snare and toms with the snare zone, and
kick drum. In order to detect which zone the user played, the
use of separate plates per zone was considered, but to simplify
the design we opted to use a single top plate with positional
interpolation from piezo sensors.

To manufacture this, we 3D printed a rim with edges, see
Figure 2, in which a laser-cut acrylic triangle sits as seen in Figure
3. This also serves to provide a visually-distinct "rim" and "head"
to the plate, similar to the rim and head of an acoustic drum
like a snare or tom drum. Acrylic was chosen so that LED lights
mounted inside the enclosure would shine through, allowing
us to dynamically color sections of the head around the rim to
provide visual feedback and visually separate the zones of the top
plate. Colored marker is also used on the bottom of the top plate
to diffuse the light from the LEDs and ensure the three zones are
always visually distinct, even when the device is off.

Figure 2: 3D rim for top plate

4.2 Player Feedback

Feedback is provided both through haptics, visuals, and sound.
For haptic feedback, a vibration motor is mounted in the center of
each zone. These motors provide short-decay vibrations of taps to
mimic snares (like one would find in a cajon) and also vibrate the
currently-playing groove (each zone vibrating as drums within
it’s category is played).

Visual feedback is provided by LED lights inside the enclosure.
The lights mounted in the bottom two corners (mapped with kick
and snare) flash the current tempo the device has inferred from
the user-tapped sequence, and those in the ride/hi-hat zone use
color to show the selected instrument.

NIME ’25, June 24-27, 2025, Canberra, Australia

Figure 3: Top plate

Auditory feedback is provided by a surface transducer mounted
to a side plate of the device, which mechanically vibrates the plate
within the auditory frequency range, thereby producing sound
from the plate.

4.3 Gesture Mapping

A capacitive touch sensor on the side of the device (mounted at
the corner of the ride/hi-hat section) is used to toggle between
whether this zone is mapped to ride cymbal or hi-hat.

When additional force is applied and swiped along one of
the sections of the top plate, the velocity of all notes related to
the mapping of that section can be increased or decreased. For
example, this gesture could be used in the hi-hat zone of the
top plate to not only affect the volume of the hi-hat but also of
cymbals.

Hits within each zone are mapped to a note for the zone’s
associated sound (kick, snare, and ride or hi-hat). Since force is
often associated with volume [6], presses within each zone with
swipes towards or away from the top plate’s center can be used
to affect the volume of the instrument’s group (e.g. a press with
swipe towards the center in the hi-hat zone would reduce the
volume of the hi-hat and all other cymbals. This is facilitated by
reducing the velocity of the MIDI notes outputted by the system
and reducing the volume of these sounds created by the device.

Tempo is stored in global state within the device and inferred
from tapped sequences in the center of the device.

4.4 Device Enclosure

A triangular box (with 8-inch-long sides) was laser-cut from
acrylic, along with three small square stands on which to mount
the top plate. This box houses the electronics, lights, and power
circuitry. A piece of rubber is placed under each mounting square
to isolate the top plate from other vibrations in the environment,
and to give the top plate some ability to move as the user presses
into it.

4.5 Electronics

The initial iteration of Groovebox used an Arduino Uno to detect
onsets and communicated with a host computer for additional
processing and groove generation. This, however, did not meet
the requirement of being self-contained so we opted to migrate to
a single-board computer to handle all processing and VAE infer-
ence on-board the device. The Raspberry Pi 3B and Jetson Nano
were considered as we had them readily available, and between

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376

378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441

NIME °25, June 24-27, 2025, Canberra, Australia

Figure 4: Device with enclosure and top plate

the two the Raspberry Pi was selected due to the relatively low
overhead of the machine learning model used.

This Raspberry Pi reads the signal from the piezoelectric sen-
sors, performs signal processing to determine the type of interac-
tion, performs the VAE inference to generate a groove from the
user input, and handles groove modulation based on user input.

The Raspberry Pi runs directly on the power of the USB cable
used to connect it to a computer, over which the final MIDI data
is also transmitted.

4.6 Onset detection

The tap/hit detection system consists of a piezoelectric sensors
placed between the top plate and acrylic mounting squares. These
sensors utilize the piezoelectric effect to generate small voltages
when force is applied, which is read by the microcontroller’s ADC
and passed through the onset detection pipeline. The original
design contained a pipeline of filters and moving averages to
remove noise and normalize the input, but this came at the cost
of processing time as well as complicating the ability to process
sustained presses. In the current software, the raw piezo data is
used by the program to determine onsets and offsets. The program
will assume that the piezo reads zero when not pressed, and
extremely high when pressed on. This behavior can be achieved
through careful physical assembly.

The system is designed to have three software processes, the
orchestrator process, the signal processing process, and the in-
ference process (see figure ??. The signal processing process
detects user gestures and locations (via spacial interpolation and
other signal processing algorithms discussed in 4.6) and passes
them along to the orchestrator process. The orchestrator pro-
cess is responsible to managing system state (e.g. tempo, current
groove), assembling user-drummed sequences, coordinating with
the other two processes, applying modulations to the system out-
put, and outputting the final MIDI data. The final process, the
GrooVAE process, generates a groove from the user-drummed
sequence and passes that back to the orchestrator.

4.7 Drum Groove Generation

Google Magenta’s Tap2Drum model [13] is the model used in this
system. It is a Variational sequence-to-sequence Autoencoder

Anon.

(VAE) of their proposed GrooVAE family, which has three main
objectives: humanization, infilling, and generation. This specific
model is trained such that the latent space encodes the rhythm.
A drum groove can therefore be encoded as a rhythmic sequence,
and any rhythmic sequence can be decoded as a full drum groove.
The model, dataset, and trained weights are publicly available
[13].

This model is retrained to use a latent space consisting of
rhythmic patterns of four notes (kick, snare, hi-hat, and ride).
Additionally, the data processing is changed so that the model
outputs a fully-orchestrated version of the next two bars in the
recording rather than just a fully-orchestrated version of the same
bar, so that there is some level of prediction of what musical ideas
come next. Using the dataset published by [13] target data of this
shape is created by processing each groove, and the model is
retrained on this. The resulting model is an extension of the
Tap2Groove module presented by [13], where multiple notes are
considered but the other effects of orchestration and infilling are
still achieved.

Other models considered were Google Magenta’s MusicVAE
[25], which is another VAE where latent space manipulation is
utilized to shape the model’s encodings to "look" like something
producible by a human, namely MIDI, and Meta’s MusicGen
Model [7], which generates audio based on audio tokens (which
they obtain from audio samples using the EnCodec model pro-

posed by [9]).

5 Implementation

Unfortunately, many of the subsections did not get fully inte-
grated, and the system didn’t end up being fully functional. Many
sub-systems like the onset detection, lights control, haptic feed-
back control, sound output through the side-mounted transducer,
and basic control software worked independently (see videos in
Appendix A).

5.1 Circuit Design and PCB Fabrication

The fabrication of a physical circuit to connect all the parts was
critical, since the number of integrated components was large
enough that a breadboarded solution would not have fit within
our size constraints. A perfboard circuit was hand-wired to test
the designed schematic, which was used to test and develop light
and haptic feedback control (figure 5).

Because this circuit had many tightly-packed wires, the circuit
created was not very clean and rather fragile. For this prototype
wires were stacked one on top of the other, and for the most
part current ratings of wires was not super considered since the
assumption was that the final circuit would have high-current
power lines. Additionally, the connection between the Raspberry
Pi and this circuit was not very good (it was designed to be a
"hat" which sat on top of the GPIO pins), likely due to low-quality
female header pins and/or not enough splay tension created when
soldered.

After realizing the original plan of using the Voltera One in
the lab was found to be infeasible (due to the absence ink or an
ink head), many attempts were made at milling a double-sided
PCB for this design on a CNC router (see figure 6). A design
was created in KiCAD, and after many failed attempts to get
the software in the Carbide ecosystem working (which was the
CNC’s manufacturer), pcb2gcode [4] was used to create gcode
files and Candle [8] was used to control the CNC as per a couple
tutorials [21] [3]. Due to a broken bit being the only on-hand bit

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

Groovebox: Exploration of drum groove generation from hand percussion

Figure 5: Prototype circuit on perfboard

Figure 6: Failed PCBs

small enough to cut traces, it was used to plow into the copper
plating of the board, which led to more pressure than would be
ideal (causing bowing in regions of the board near the center, and
as a consequences not full-depth cuts). Improved results were
gotten by using Voronoi routing, which instead of cutting out
individual traces instead isolates maximal regions connecting
endpoints, leading to less cuts and oftentimes thicker traces. The
two types of boards can be seen in figure 6.

Unfortunately, due to issues with reading piezo inputs on the
prototyped board, a prior perfboard piezo hookup circuit was
used to read piezo inputs, and the circuit was used to power the
other subsystems like sound. We unfortunately ran out of time to
integrate the lighting and haptic systems, but due to the nature
of the perfboard prototype circuit needing to sit on top of the
Raspberry Pi, the other piezo board and ADC would not have
been able to connect to it had it been in place. This meant not
all the boards would fit in the enclosure, and unfortunately the
system ended up having to be demonstrated out of it (see figure
7).

NIME ’25, June 24-27, 2025, Canberra, Australia

Figure 7: Open device due to multiple boards being used.

5.2 Machine Learning Model

The updated machine learning model was created, trained, and
ready to use. Unfortunately it wasn’t integrated onto the Rasp-
berry Pi due to time constraints. Hyperparameter search was
successfully used to isolate hyperparameter values that produced
acceptable results, however a more robust search would have
yielded better performance. Modifying the model’s architecture
to have more recurrence (and therefore ability to reckon with
time) would have also improved importance, but this was not
implemented due to time.

5.3 Software Systems

Tap tempo, location-based onset detection, and user input record-
ing were all implemented. The next steps would have been to inte-
grate communication with a machine learning inference process
and add support for extended gestures, but this was unfortunately
not done due to us running out of time.

6 Reflections

The biggest obstacle that was encountered during this problem
was time. Many tasks depended on other tasks being done, and
many people’s progress depended on the success of other people’s
tasks (which were not always straightforward). One example of
this would be the fact that PCBs didn’t get made meaning the
integration of other parts didn’t happen.

If we were to do this again, we would have put together a
comprehensive breakdown of the work that needed to be done,
sequence the work by identifying what depended on other tasks
being done, and set hard deadlines for each task assigned to
specific people instead of the softer deadlines (like "the end of
the week" sent in a Discord channel) that we had.

Additionally, we would have ordered parts much much sooner,
and planned to cut PCBs much earlier (like week 3). In week 1 we
also should have verified we had all the tools and parts needed
to perform all our tasks (e.g. ink for the Voltera One, V bits for
the CNC).

Finally, the last point of contention we had was not having
a solidly-defined idea of the interaction between the user and
machine until the end of week 5. If we were to do this again, this
would have been figured out week 1, and as a result we would
have realized that the changes in the machine learning model

579

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

630

631
632
633

634

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

693

NIME °25, June 24-27, 2025, Canberra, Australia

were necessary much sooner in the term, allowing for more time
to train, tune, and test different architectures.

On the other hand, the performance of the model, sound sys-
tem, and many individual functionality of many subsystems came
together relatively painlessly, which was a definite success. Our
prior experience with using logic level shifters for controlling
lights and other modules informed our decision to use on in this
system, and as a result there were virtually no issues controlling
the lights or motors.

References
[1] Launchpad | Novation.
[2] OP-1 field.
[3] Rapid PCB Prototyping with KiCad and a CNC Router | Peter Todorov Blog.
[4] pcb2gcode/peb2geode, Dec. 2025. original-date: 2015-02-17T10:16:56Z.
[5] O.Bown, A. Eldridge, and J. McCormack. Understanding Interaction in Con-

temporary Digital Music: from instruments to behavioural objects. Organised
Sound, 14(2):188-196, Aug. 2009.

[6] C. Cadoz. Supra-Instrumental Interactions and Gestures. Journal of New
Music Research, 38(3):215-230, Sept. 2009. Publisher: Routledge _eprint:
https://doi.org/10.1080/09298210903137641.

[7] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi, and A. De-
fossez. Simple and Controllable Music Generation. Advances in Neural
Information Processing Systems, 36:47704-47720, Dec. 2023.

[8] Denvi. Denvi/Candle, Dec. 2025. original-date: 2015-07-15T17:46:48Z.

[9] A.Défossez, J. Copet, G. Synnaeve, and Y. Adi. High Fidelity Neural Audio
Compression, Oct. 2022. arXiv:2210.13438 [eess].

[10] M. A.Eid and H. Al Osman. Affective Haptics: Current Research and Future
Directions. IEEE Access, 4:26—40, 2016. Conference Name: IEEE Access.

[11] S.Fasciani. History of Digital Musical Instruments, Aug. 2014.

[12] E.Frid. Accessible Digital Musical Instruments—A Review of Musical Inter-
faces in Inclusive Music Practice. Multimodal Technologies and Interaction,
3(3):57, Sept. 2019. Number: 3 Publisher: Multidisciplinary Digital Publishing
Institute.

[13] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bamman. Learning to Groove
with Inverse Sequence Transformations, July 2019. arXiv:1905.06118 [cs].

[14] D.Herremans, C.-H. Chuan, and E. Chew. A Functional Taxonomy of Music
Generation Systems. ACM Comput. Surv., 50(5):69:1-69:30, Sept. 2017.

[15] A. Hunt, M. M. Wanderley, and M. Paradis. The importance of parameter
mapping in electronic instrument design, May 2002.

[16] R. Huott. Precise control on compound curves. In Proceedings of the 2005
conference on New interfaces for musical expression, NIME *05, pages 244-245,
SGP, May 2005. National University of Singapore.

[17] A.Kapur. A HISTORY OF ROBOTIC MUSICAL INSTRUMENTS. ICMC, 2005.

[18] R. Koehly. Fabrication of Sustainable Resistive-Based Paper Touch Sensors:
Application to Music Technology. PhD thesis, Sept. 2011.

[19] R.Koehly, M. Wanderley, T. van de Ven, and D. Curtil. In-House Development
of Paper Force Sensors for Musical Applications. Computer Music Journal,
38:22-35, June 2014.

[20] R. Kogan. Brief History of Electronic and Computer Musical Instruments.
Apr. 2008.

[21] mattwach. Milling Printed Circuit Boards (PCBs) on a Cheap CNC Machine.

22] B. A. Myers. A brief history of human-computer interaction technology.
interactions, 5(2):44-54, Mar. 1998.

[23] D. A.Norman. The design of everyday things. MIT press, Cambridge (Mass.),
rev. and expanded edition edition, 2013.

[24] J.Qi, L. Ma, Z. Cui, and Y. Yu. Computer vision-based hand gesture recogni-
tion for human-robot interaction: a review. Complex & Intelligent Systems,
10(1):1581-1606, Feb. 2024.

[25] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A Hierarchical
Latent Vector Model for Learning Long-Term Structure in Music, Nov. 2019.
arXiv:1803.05428 [cs].

[26] T.B. Sheridan. Human-Robot Interaction: Status and Challenges. Human
Factors, 58(4):525-532, June 2016. Publisher: SAGE Publications Inc.

[27] K. Suzuki and S. Hashimoto. Robotic interface for embodied interaction via
dance and musical performance. Proceedings of the IEEE, 92(4):656-671, Apr.
2004.

[28] P.V.Unma Desai, K. Yamakawa, and K. E. MacLean. A Descriptive Analysis
of a Formative Decade of Research in Afective Haptic System Design, Apr.
2023.

[29] A.Xambé. Embodied Music Interaction: Creative Design Synergies Between
Music Performance and HCIL. In S. Broadhurst and S. Price, editors, Digital
Bodies, pages 207-220. Palgrave Macmillan UK, London, 2017.

Anon.

A External videos, phtotos, and source code

Source code, photos, and video recordings can be found at https:
//github.com/WheatleyTheCore/Groovebox.

Video of haptic motor control working: https://drive.google.c
om/file/d/1HjcLWOebkLvY0TNgQXAtHfgimb6ieeb1/view?usp
=sharing.

Video of lights working: https://drive.google.com/file/d/16L-
5HFANtyg8-DIWtUqhRhX5H6bjK1qp/view?usp=sharing

699

700

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

https://github.com/WheatleyTheCore/Groovebox
https://github.com/WheatleyTheCore/Groovebox
https://drive.google.com/file/d/1HjcLWOebkLvY0TNgQXAtHfgimb6ieeb1/view?usp=sharing
https://drive.google.com/file/d/1HjcLWOebkLvY0TNgQXAtHfgimb6ieeb1/view?usp=sharing
https://drive.google.com/file/d/1HjcLWOebkLvY0TNgQXAtHfgimb6ieeb1/view?usp=sharing
https://drive.google.com/file/d/16L-5HFANtyg8-DlWtUqhRhX5H6bjK1qp/view?usp=sharing
https://drive.google.com/file/d/16L-5HFANtyg8-DlWtUqhRhX5H6bjK1qp/view?usp=sharing

	Abstract
	1 Introduction
	2 Background and Prior Art
	3 Requirements
	3.1 Gestural Interaction and Input
	3.2 Visual Design
	3.3 Portability
	3.4 Use Context
	3.5 Cost and Development Materials

	4 Design
	4.1 Top Plate
	4.2 Player Feedback
	4.3 Gesture Mapping
	4.4 Device Enclosure
	4.5 Electronics
	4.6 Onset detection
	4.7 Drum Groove Generation

	5 Implementation
	5.1 Circuit Design and PCB Fabrication
	5.2 Machine Learning Model
	5.3 Software Systems

	6 Reflections
	References
	A External videos, phtotos, and source code

