Optimized metals separation for remanufacturing of product-centric recycled and reclaimed scrap

Akanksha Gupta and Brajendra Mishra

About the Presenter

- Researcher: Akanksha Gupta
 - PhD candidate, Department of Material Science and Engineering, Worcester Polytechnic Institute, MA, USA
 - B.Ed., Chemical Engineering, RVCE, India
 - Undergraduate senior year project on N-doped reduced graphene oxide/Mn₃O₄ composite as electrode materials for supercapacitors at IISc, India
- Advisor and Co-Author: Brajendra Mishra
- Funding source: Army Research Laboratory
- Contact: agupta7@wpi.edu

Motivation

- Problem / Opportunity:
 - Many of today's products are made of multiple materials, making recycling/reclamation difficult
 - Various kinds of coatings are applied on metal substrates for protection against service conditions and enhanced performance. Higher material properties of coatings makes its removal a challenge
 - Motivation for coating removal- Refurbishment, recycling o secondary materials, inspection and sustainable developmen
- Approach:
 - Review coating separation techniques for most efficient method
 - High temperature oxidation for tantalum metal or alloy separation from steel substrate
- Project Objective: Efficient removal of coating with minimal damage to substrate

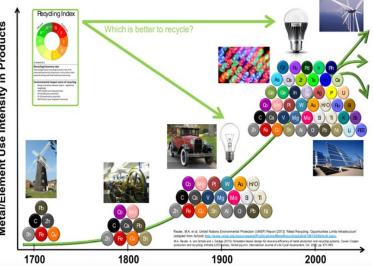


Figure 1: The ever-increasing use of complex mixtures of metals in products

Project Information

- Success Defined as:
 - Ability to efficiently separate coating from substrate with minimal damage to the substrate
- Potential Impact of Success:
 - Value added recycling of scrap; positive economic and environmental impact
 - Refurbishment and reuse of metal substrate after separation from coatings leads to reduce in consumption of primary metals

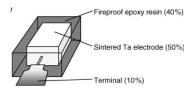
• What is the current state of the art?

- Cr is replaced by Ta in gun barrels as it is more susceptible to heat resistance. There is not much literature on Ta-based coating separation technique from steel substrate. Traditionally, Ta is recycled or recovered by hydrometallurgy and oxidation methods
- The recovery% 90-95, by a combination of hydrometallurgy and oxidation from electronic capacitors

Project Information

• What is the current state of the art?

- Nichrome coated steel:
- Traditionally, first precipitate nickel using chemicals like sulfides and carbonates followed by separation from water as sludge; difficult and waste by-product producing method since plating contains stabilizers, inhibitors, etc.
- > Other methods- Ion exchange and batch electrochemical treatment
- Recovery% > 90, by hydrometallurgy, but this is incase of superalloy scrap
- Sn coated steel:
- Detinning processes such as hydrometallurgy, dry metallurgical methods, electrolytic processes and processes that use dry chlorine
- Most of the tin recycled is from industrial waste stream. Current detinning processes are mostly steel upgrading processes



Types of coating

COATING	DEPOSITION METHOD	REMOVAL METHOD
Organic coatings (Paint, polymer, ormosil)	PVD, CVD, sol-gel, thermal spray gun	Physical, chemical, thermal
Inorganic oxides (Al ₂ O ₃ , Cr ₂ O ₃)	PVD, sol-gel, thermal spray gun	Thermal, chemical
Refractory coatings (Ta, TaW)	Cold spray, Cladding, thermal spray	Thermal, Cryogenic, Chemical
Metal and alloys (Fe, Steel, Ni, Al and alloys)	Cold spray, Cladding, thermal spray gun	Chemical, Electrochemical Cryogenic, Physical or their combinations

Traditional coating removal methods

REMOVAL METHODS	FACTORS ASSOCIATED WITH REMARKS		
	COATING AND SUBSTRATE		
Mechanical (Machining tool with	High thickness, low adhesion, poor	-Less applicable on complex	
cutting edge)	efficiency	geometry	
		-Additional steps may be required	
Chemical (Stripping or leaching;	Small thickness coating has higher	-Waste and byproducts formed	
strippers vary by pH)	efficiency, removes tough coatings	-can damage substrate by forming	
		localized degradation	
Electrochemical (Electrolytes vary	Applicable on variable thickness,	-High consumption of power	
by pH)	high efficiency, less impact on	-High efficiency	
	substrate	-Less viable on large scale	
Thermal (Laser, heat lamps,	Applicable on variable thickness,	-High consumption of power	
cryogenic, CO ₂ pulsed laser beam)	selective removal possible, high	-Low damage to substrate	
	efficiency	-Requires robotic application	
Physical (Impact method using	Applicable to variable thickness, high	-Robotic application may be	
pressurized gas or liquid; High	adhesion can cause damage on	required	
pressure waterjet, plastic media,	substrate, applicable on variable	-Many abrasive media with	
abrasive media)	hardness	different hardness can be chosen	

Tantalum coated steel

- Tantalum cold sprayed 4130 steel
- Tantalum cold sprayed A36 steel
- Tantalum alloy clad steel

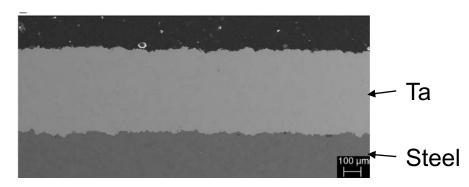


Figure 2: SEM image of Cold sprayed Ta on steel

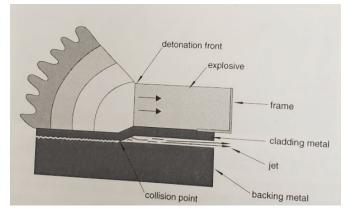
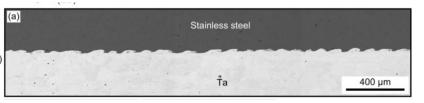



Figure 3: Schematic of explosion bonding process

Figure 4: SEM image of Ta explosion welded on steel

Source: Paul, H., et al. "Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets." *Materials & Design* 153 (2018): 177-189.

Source: Koivuluoto, Heli, et al, "Cold-sprayed copper and tantalum coatings — Detailed FESEM and TEM analysis", *Surface and Coatings Technology*, 204 (2010):2353-2361

Tantalum coated steel

- Only attacked by acids HF, fuming H₂SO₄ and strong bases. Thus, chemical separation is not a preferred separation method
- Ta readily absorbs oxygen and oxidizes above 500°C, and forms Ta₂O₅ phase
- Ta-O_{S-Sol} = (TaO_z) = β -Ta₂O₅ (Parabolic (I))
- Ta-O_{S-Sol} = (TaO) = β -Ta₂O₅ (Parabolic (II))

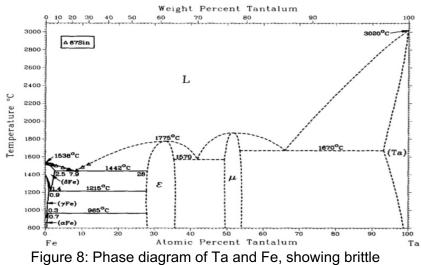


Figure 8: Phase diagram of Ta and Fe, showing brittle intermetallic phase formation of Ta and Fe at high temperatures

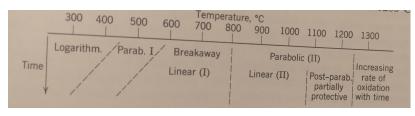


Figure 9: Schematic summary of the rate equations observed in oxidation of tantalum at 300-1300C

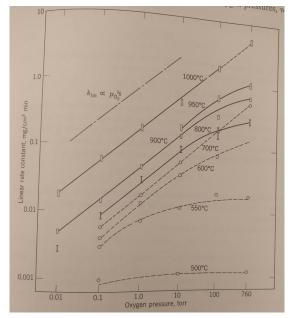
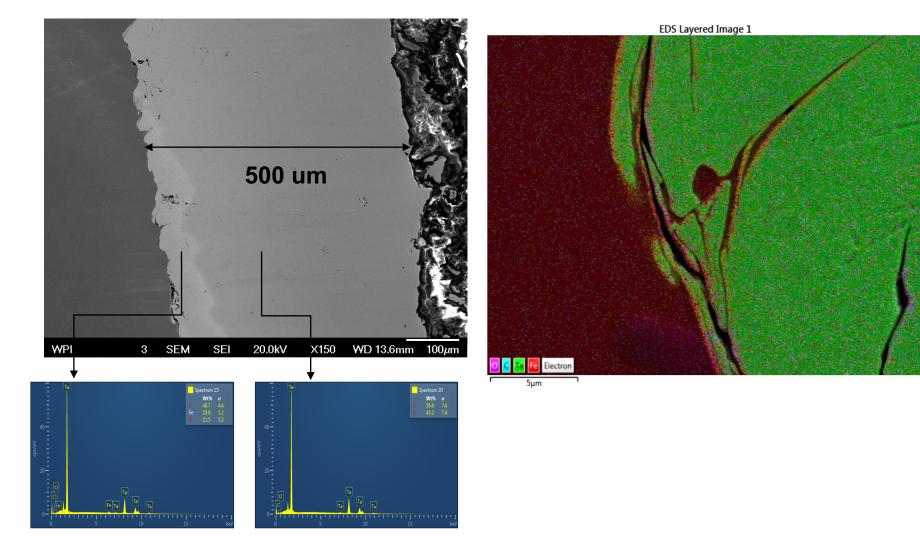


Figure 10: Linear oxidation of Ta as a function of temperature and oxygen pressure

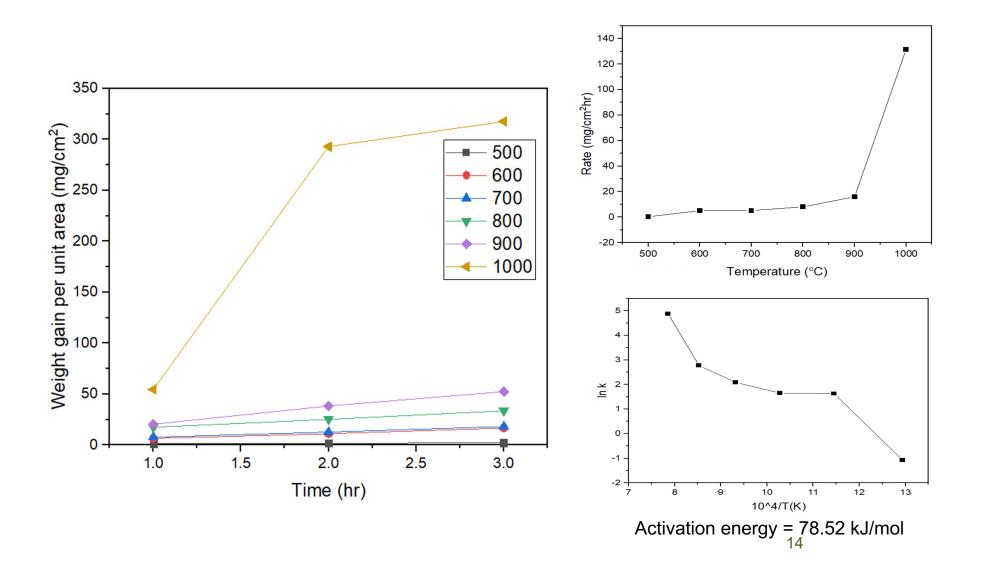
Tantalum coated on steel

Oxidation tests were carried out on:


Sample 1. Tantalum cold-sprayed 4130 steel Sample 2. Tantalum cold-sprayed A36 steel

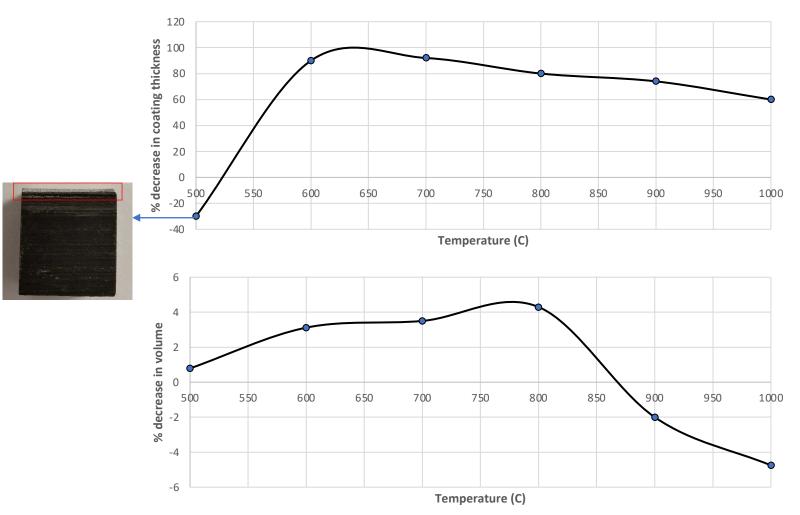
Sample 1: Ta cold-sprayed 4130 steel

Sample information- Ta cold-sprayed 4130 steel

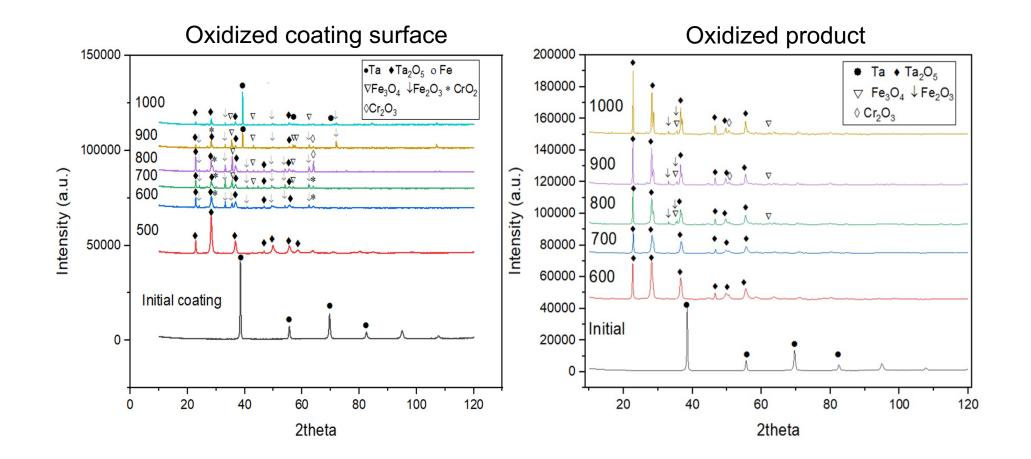

Experimental design- Ta cold-sprayed 4130 steel

- Oxidation tests were conducted in a muffle furnace in air
- Temperature is varied between 500-1000C, time is constant at 3hr

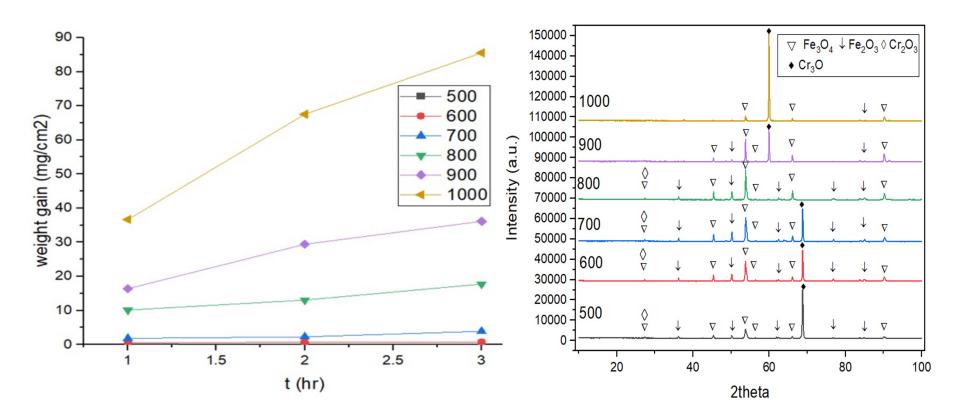
Experiment	Temperature (C)
1	500
2	600
3	700
4	800
5	900
6	1000



Results- Ta cold-sprayed 4130 steel



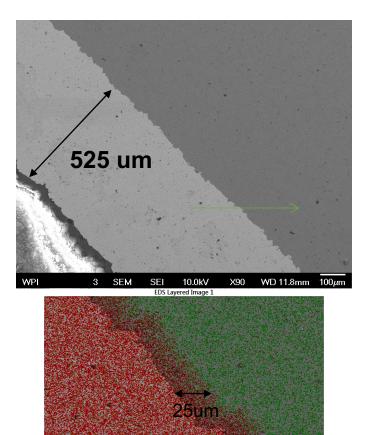
Results- Ta cold-sprayed 4130 steel

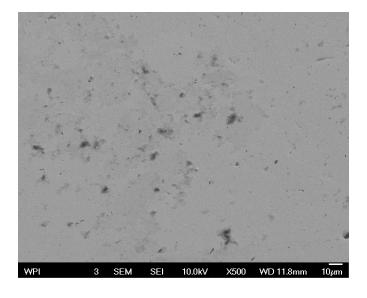


XRD- Ta cold-sprayed 4130 steel

Oxidation of 4130 steel substrate

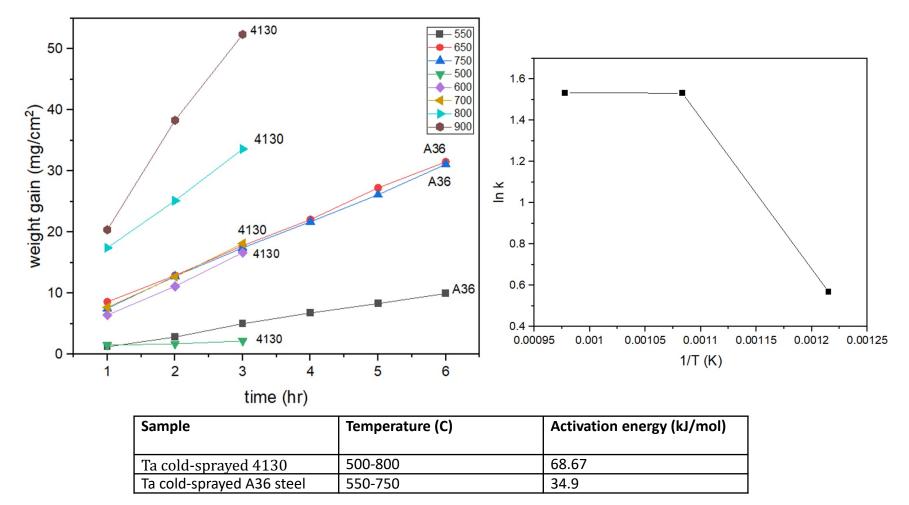
Sample	Activation energy (kJ/mol)
Ta cold-sprayed 4130	78.52
4130 steel	101.31


Conclusion


- With increasing temperature, Ta₂O₅ recovery increases in the product, as observed from XRD. It is also observed that ~90% of coating thickness is reduced for temperatures 600C and 700C.
- With increasing temperature from 800C to 1000C, Ta₂O₅ recovery increased but so did oxidation of steel substrate.
- Thus, from 500-700C, relatively lower substrate oxidation and higher Ta_2O_5 recovery is observed.

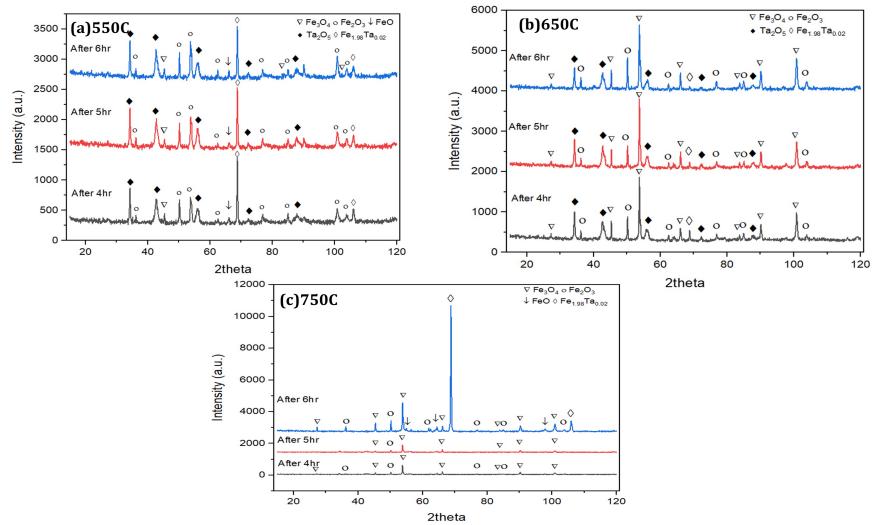
Sample 2: Ta cold-sprayed A36 steel

Element	Content
Carbon, C	0.25 - 0.290 %
Copper, Cu	0.20 %
Iron, Fe	98.0 %
Manganese, Mn	1.03 %
Phosphorous, P	0.040 %
Silicon, Si	0.280 %
Sulfur, S	0.050 %

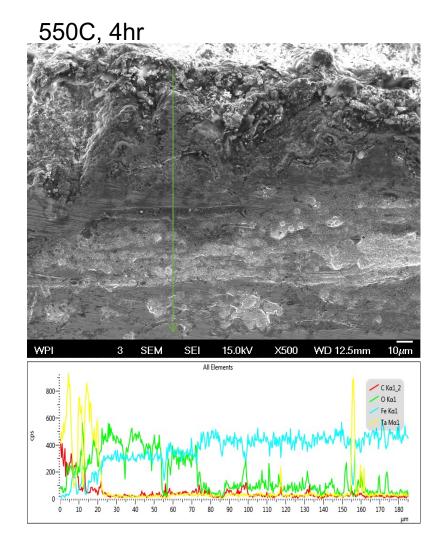

Experimental design- Tantalum cold-sprayed A36 steel

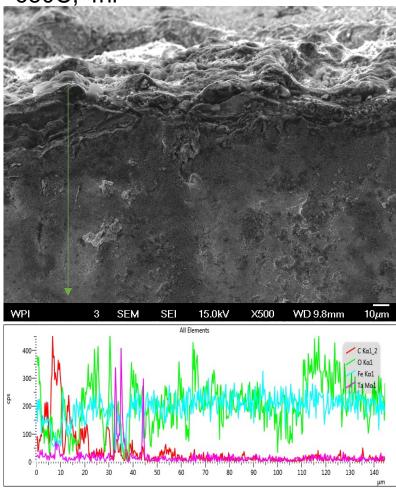
Variable: Temperature (550, 650, 750C), time (4, 5, 6hrs)

Experiment #	Temperature (C)	Time (hr)	
1	550	4	
2	550	5	
3	550	6	
4	650	4	
5	650	5	
6	650	6	
7	750	4	
8	750	5	
9	750 6		



Results- Tantalum cold-sprayed A36 steel


XRD analysis of oxidized coating surface


23

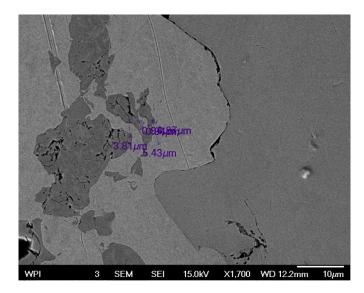
SEM at the interface

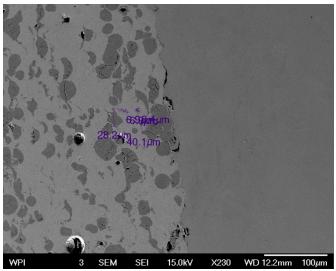
650C, 4hr

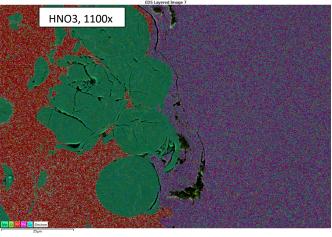
Determining % Purity

No.	Flux	Acid	Result	
1	-	HNO3 + HF	Sample settled at the bottom of the beaker	
2	-	15M HNO3 + H2O + 40% HF	Colloidal solution and some sample settles at the bottom	0
3	-	H2SO4 heated to 50C + HF	Sample settles at the bottom	6
4	3 LiT: 2 LiM	25% HNO3 (4M)	Sample settles at the bottom	
5	LiT	25% H3PO4 (4.3M)	Colloidal solution (more clear)	
6	LiT (1:40)	6.14M H3PO4 + HF	Colloidal solution (more clear)	
7	3 LiT: 2 LiM	6.14M H3PO4 + HF	Colloidal solution (less clear) 	250m - 2 77820 - 2

• Conclusion: Fusion shows the best result, and will be explored further to determine the purity %

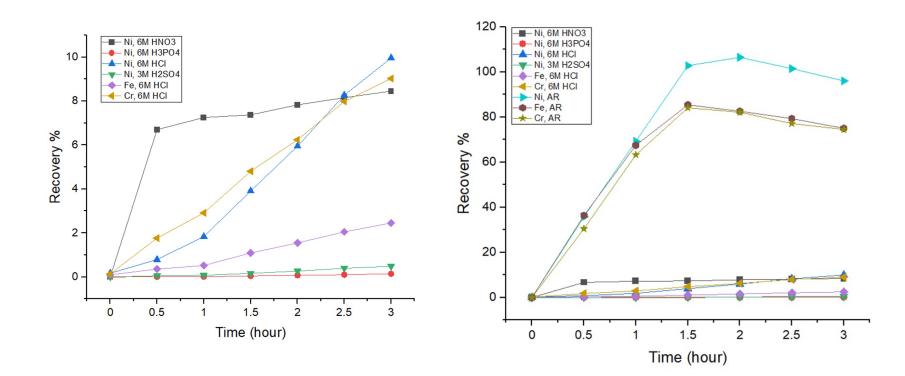

Future Work


- Oxidation kinetics of pure Ta, A36 steel and 4130 steel between 500-1000C using TGA
- Oxidation kinetics of A36 steel substrate
- Determining the % recovery and % purity of oxidation products by using a suitable flux to analyze with ICP-OES
- Determining migration rate of major elements (Fe, Ta) during oxidation



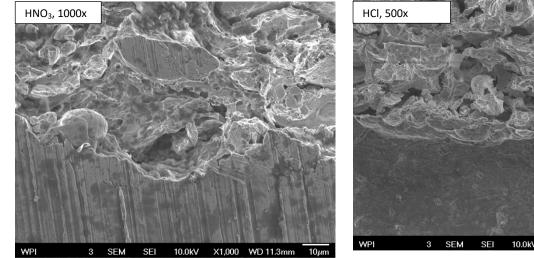
CrC-NiCr cold-sprayed 316 stainless steel

- Coating thickness = 2.5mm
- Coating composition = 80% Ni, 20% Cr; measured by ICP-OES
- ➢ No interdiffusion interface

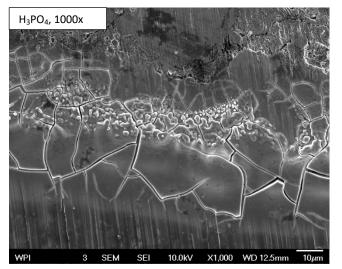


Acid leaching

Effect of type of acid:


Variable: Acid type

Constant: time = 3hrs, temperature = 50C, concentration = 6M except 3M in case of H_2SO_4


SEM analysis at interface between coating and substrate

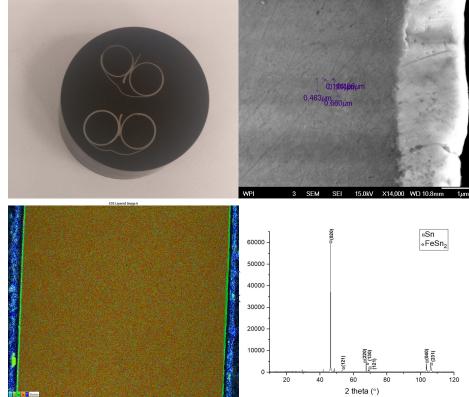
10.0kV X500 WD 13.8m

 \succ At the Interface:

Initial		After H ₃ PO ₄		
Element	Wt%	leaching		
Ni	27.4	Element Wt%		
Fe	31.7	Ni 32.5		
Cr	29	Fe 17.9		

Future work:

- Electrodeposition of CrC-NiCr coating on a suitable cathode
- Remelting and adjusting of composition to reproduce steel



Sample information: Tin coated steel

- Samples procured from SMS Group
- Dip coated
- Coating thickness = 1.5um, measured by SEM-EDX

Future work:

- Electrolytic stripping of Sn from steel substrate
- Alkaline detinning followed by electrowinning

THANK YOU

