Effects of Aqueous Phase Recycling on Hydrothermal Liquefaction

Scott D. LeBlanc, Alex R. Maag, Geoffrey A. Tompsett, Heather O. LeClerc, Michael T. Timko
Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA

Motivation

Total MSW Landfill by Material, 2018
146.1 million tons

- Food and green waste comprise ~40% of materials in landfills
- U.S. food waste results in 170 million metric tons of CO₂ annually (excluding emissions from landfills)

Methods

- HTL typically uses pure water as a feedstock alongside the organic feed
- The process produces wastewater that can be reused in the process rather than using pure water

Results

- Recycling with aqueous phase derived from food waste shows a decrease in oil yield as compared to using water
- Carbon accumulates in the aqueous phase with each recycle

Aqueous Phase Carbon Reduction

- Recycling CELF aqueous phase significantly reduces carbon content from the initial feed

Conclusion

- Recycling CELF aqueous in HTL is beneficial due to the decrease in organics in the aqueous phase
- Recycling food waste aqueous is not beneficial due to the decrease in oil yield and increase in aqueous phase organics

Future Work:

- Explore effects of aqueous phase recirculation with a catalyst
- Develop ways to avoid heteroatom accumulation in the oil phase
- Perform economic balance on process to determine commercial viability

Nitrogen Accumulation in Biocrude

- As aqueous phase is recycled, nitrogen content in the biocrude oil increases, indicating a lower oil quality with each recycle
- Both feeds show this trend to similar degrees

\[HHV = \frac{33.5C + 142.3H - 15.4O - 24.5N}{100} \]

Acknowledgements

I would like to thank the NSF for funding the REU program and Prof. Titova for organizing the program. I greatly appreciate being able to participate in academic research as a part of the Timko group.

References