

A National Science Foundation Industry/University Cooperative Research Center

Experimental Study of Drying of Paper with Ultrasound Mechanism

Zahra Noori O'Connor Professor Jamal Yagoobi

Sustainability Project Competition April 2023

dryingresearch.org Contact cardinfo@dryingresearch.org for more information Center Proprietary

Motivation - Net Zero Carbon Footprint by 2050

- The global temperature needs to be managed (global warming).
- Industry sector is the source of 24% of greenhouse emissions in the USA.

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#colorbox-hidden https://www.wri.org/insights/net-zero-ghg-emissions-questions-answered

Why Is Drying Important?

Estimated energy use in common industrial processes

Process heating operation	Description/example applications	Typical temperature range (F)	Estimated (2010) U.S. energy use (TBtu)		
Fluid heating, boiling, and distillation	Distillation, reforming, cracking, hydrotreating; chemicals production, food preparation	150–1000°	3,015		
Drying	Water and organic compound removal	200-700°	1,178		
Metal smelting and melting	Ore smelting, steelmaking, and other metals production	800-3000°	968		
CalcinIndustrial drying consumes 12% of all process energy used inMetal and reAmerican manufacturing annually.					
Non-metal melting	Glass, ceramics, and inorganics manufacturing	1500-3000°	199		
Curing and forming	Polymer production, molding, extrusion	300-2500°	109		
Coking	Cokemaking for iron and steel production	700–2000°	88		
Other	Preheating; catalysis, thermal oxidation, incineration, softening, and warming	200-3000°	1,049		
Total			7,204		

US Department of Energy, Quadrennial Technology Review, September 2015, Table 6.1, p. 189.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Estimated energy savings by new technologies

R&D opportunity	Applications	Estimated annual energy savings opportunity (TBtu/yr)	Estimated annual carbon dioxide (CO ₂) emissions savings opportunity (million metric tonnes [MMT]/yr)			
Advanced non-thermal water removal technologies	Drying and concentration	500	35			
"Super boilers" (to produce steam with high efficiency, high reliability, and low footprint)	Steam production	350	20			
Waste heat re DOE estimates that 40% of the energy used in industrial						
Hybrid distill drying can be saved with non-thermal technologies annually.						
New catalysts (to improve y processes) This would save industry \$16+B/year.						
Lower-energy, high-temperature material processing (e.g., microwave heating)	Crosscutting	150	10			
Advanced high-temperature materials for high-temperature processing	Crosscutting	150	10			
Net-shape and near-net-shape design and manufacturing	Casting, rolling, forging, additive manufacturing, and powder metallurgy	140	10			
Integrated manufacturing control systems	Crosscutting	130	10			
Total		2,210	155			

US Department of Energy, Quadrennial Technology Review, September 2015, Table 6.2, p. 189.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Drying – Paper Industry

World paper consumption ■ Ventilation (hall) 6% World 6 % West-Europe 25 % Headbox Short 1% circulation 11% North America 34 % Press13% East-Europe section 4% Latin-America 3% Asia 3% **Dryer section** 69% Japan 25 % https://www.wypojetitawece.cerrajeriahnosestrada.com https://www.metso.com

Energy consumption in papermaking machine

5

dryingresearch.org For information contact: cardinfo@dryingresearch.org

Center Proprietary

Objectives

Ultrasonic drying of paper

Ultrasonic drying of an over-saturated paper sample.

- ✓ Input power = 10 W
- ✓ Frequency = 1.7 MHz
- ✓ Transducer type = PZT mist generation transducer

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Objectives

Ultrasonic drying of paper

Ultrasonic drying of an over-saturated paper sample.

Advantages of ultrasonic drying:

- \circ Lower drying time
- Higher energy efficiency
- Lower temperature for drying (non-thermal)
- Improvement of product quality
- It is a green technology

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

The major components in the experimental setup.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

Comparing Ultrasonic Drying with Conductive Heat Drying

Comparing the drying curves for conductive heating with ultrasound drying.

dryingresearch.org

For information contact: cardinfo@dryingresearch.org

Center Proprietary

Energy Factor (EF)

$$EF = \frac{(m_t - m_0) * h_{fg}}{\int LP(t)dt}$$

t: time

m: mass h_{fg} : latent heat of water *LP*: load power

Comparing the energy factors for different transducers and handsheet thickness = 0. 8 mm.

✓ Ultrasound drying can increase the energy efficiency by almost 40-90 times.

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

	Factors		
Abbreviation	Refining Condition	Initial Moisture Content - DBMC (%)	Thickness (mm)
H or S-unR-100-0.3	Unrefined	100	0.3
H or S-unR-150-0.3	Unrefined	150	0.3
H or S-unR-100-0.6	Unrefined	100	0.6
H or S-unR-150-0.6	Unrefined	150	0.6
H or S-R-100-0.3	Refined	100	0.3
H or S-R-150-0.3	Refined	150	0.3
H or S-R-100-0.6	Refined	100	0.6
H or S-R-150-0.6	Refined	150	0.6
H or S-Center Point	50%Unrefined & 50%Refined	125	0.45

dryingresearch.org For information contact: cardinfo@dryingresearch.org

11

Center Proprietary

2³ Factorial Design

Total Drying Time (sec) = $C_0 + C_1 *$ (Initial MC) + $C_2 *$ (Basis Weight) + $C_3 *$ (Refining Condition) + $C_4 *$ (Initial MC) * (Basis Weight) + $C_5 *$ (Initial MC) * (Refining Condition) + $C_6 *$ (Basis Weight) * (Refining Condition) + $C_7 *$ (Initial MC) * (Basis Weight) * (Refining Condition)

R-Sq = 99.47%

Term	Coef.
Constant	108.111
Initial MC	-0.222222
Basis Weight (g/m2)	0.330409
Refining Condition	24.6667
Initial MC*Basis Weight (g/m2)	0.00146199
Initial MC*Refining Condition	-0.333333
Basis Weight (g/m2)* Refining Condition	-0.085526
Initial MC*Basis Weight (g/m2)*Refining Condition	0.00219298

In the above equation, since the Refining Condition is qualitative:

Refined pulp —— Refining Condition = 1

Unrefined pulp \longrightarrow Refining Condition = -1

dryingresearch.org For information contact: cardinfo@dryingresearch.org

Center Proprietary

ILLINOIS

Expected Impact

- ✓ Providing the Pulp & Paper industry with basic understanding of ultrasound mechanism for water removal under various operating conditions.
- ✓ Reducing the temperature and time for drying (energy savings).
- \checkmark Improving the product quality.
- ✓ Contributing to the design of smart dryers.

Thank you for your attention :)

For more information contact: Zahra Noori znoori@wpi.edu

dryingresearch.org For information contact: cardinfo@dryingresearch.org Center Proprietary

