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Abstract— We propose a novel framework for robotic
metal scrap cutting in unstructured scrap yards. In this
framework the robots and workers collaborate: the worker
marks the cutting locations on the scrap metal with spray
paint and the robot then generates the cutting trajectories.
This leverages worker expertise, while deferring the dull,
dirty, dangerous aspects to the robot. For the robot, this
requires a 3-D exploration and curve reconstruction stage
for path generation. We use a non-uniform rational basis
spline (NURBS) model and a topological skeletonization
method for path generation, and implement and compare
these methods via simulations. These simulations employ a
realistic sensor noise model and highly-detailed 3-D scans
of complex, real-life scrap pieces. Real-robot experiments
with three different shapes are also provided.

I. INTRODUCTION

Recycling decommissioned large metal structures, e.g.
oil rigs and ships, or equipment, e.g. large engines
requires them to be dismantled, moved to a metal scrap
yard and cut into small workable chunks. Currently, the
cutting operation is conducted manually by skilled work-
ers using a gas torch (s. Fig. 1). This manual operation is
slow and laborious. Due to the variety of the scrap pieces
and the difficult and unstructured nature of this process,
automating this task has many challenges: For each
piece, the cutting locations and trajectories need to be
determined, the cutting parameters need to be identified,
and the cut needs to be executed at certain torch speed
and poses. All these operation variables are successfully
determined and applied by skilled workers, but very
challenging to translate into robot task parameters.

We present a human-robot collaboration workflow that
combines the strengths of skilled workers and robots.
Workers draw the desired cutting paths on scrap pieces
using spray paint, and the robot inspects the drawing
with its camera to generate cutting trajectories based on
object properties. This workflow has many advantages:

• Cutting locations are determined by the worker,
significantly reducing cognitive effort on the robot.
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Fig. 1. Manual metal cutting in an European Metal Recycling Group
scrap yard. The picture is from the company website [1].

• The robot does not scan the whole object; it works
with local information on the cutting locations.

• The labor intensive work is minimized for the
worker, since the slow, dangerous and tedious cut-
ting operation is done by the robot.

In this workflow, the robot’s role becomes:
1) Scan an arbitrary drawn curve on the scrap surface,
2) Generate a 3-D cutting path from these scans,
3) Generate a cutting trajectory within the constraints,
4) Execute the cutting operation while monitoring it.
This paper focuses on steps 1 and 2. We use point

cloud information to track and acquire the drawn curve
via two distinct curve fitting methods (namely a B-spline
method [2] and a skeletonization algorithm [3]) within
an active vision framework. To the best of our knowl-
edge, our framework and proposed pipeline present a
novel solution to the metal scrap cutting problem.

II. RELATED WORK

We first present the existing methods in robotic cutting
and welding applications. Next, we review spatial curve
reconstruction techniques relevant to our extraction step.

A. Robotic Cutting and Welding Applications

The problem of robotic cutting varies greatly across
application domains and depends on the specific tooling



used [4], [5], which in turn defines the cutting properties
(quality, speed, compatible materials). There is abundant
work on automated laser cutting; e.g., analytical methods
that assume object knowledge [6] and [7], as well as path
planning in structured settings [8]. These methods rely
on prior knowledge, i.e. a full object model, and do not
directly translate to gas torch cutting. Our framework
does not rely on prior knowledge of object geometry.

To the best of our knowledge the only robotic gas
cutting work is presented by [9], which develops a
vision-less reactive control architecture for identifying
poor strips in sensitive yet constrained surroundings.
This method is designed for a specific object shape
and application. We are not aware of any work in the
literature on robotic methods for gas cutting that is
general enough to be applied to metal scrap recycling.

A close application domain to metal cutting is weld-
ing. In this domain, the robots rely on weld seam
tracking; and seam identification such as the developed
in [10]. However, this method requires full view of thin-
enough line. Other methods borrow ideas from active
vision [11]. These algorithms enable precise following
of a weld seam, but are unsuitable for scrap metal
cutting. This is because the drawings encountered are
noisier and thicker, and the objects explored are much
larger. Other robust methods [12] are noise-resistant, but
they require prior knowledge of the welding seam.

B. Spatial Curve Reconstruction

Spatial line reconstruction is researched exten-
sively [13], [14], especially on unorganized data [15].
Such methods have special interest to our problem,
which operates on 3-D point clouds. Common recon-
struction methods rely on the optimization formula-
tion of B-Splines, Non-uniform rational basis spline
(NURBS), or Bézier curves. For example, there are
iterative methods for surface fitting [16] in the presence
of obstacles, as well as reconstruction [17] of self-
intersecting lines. More complicated shapes have been
reconstructed by partitioning them [18] for further fit-
ting using multiple curves. An alternative approach is
using principal curves [19] that are based on principal
component analysis. These resemble [20] the typical
skeletonization algorithms but the latter are instead
used to represent the connectedness of N -dimensional
binary shapes and easily represent branching paths [21].
Skeletonization is traditionally implemented in thinning
algorithms [22] for 2-D images, but extend to 3-D [23].

Each fitting approach has special advantages and
limitations for spatial curve reconstruction. We adopt the
NURBS and skeletonization approaches, and evaluate
their strengths and weaknesses in our application.

III. OVERVIEW OF THE WORKFLOW

We received domain knowledge from our corporate
sponsor European Metal Recycling (EMR) Group [1].
We assume that the target metal scrap pieces are located
at a scrap yard (similar to Fig. 1). These pieces vary
greatly in shape, and due to practical limitations it is
infeasible to acquire full scans of their shapes.

The workers can easily identify the metal types and
the cutting locations via quick inspection. Then, they
cut the parts using a gas torch. Although the cutting
locations on a scrap piece can be determined in a few
minutes, it requires domain-specific expertise of the
skilled worker and a global shape knowledge of the tar-
get object. On the other hand, the cutting operation itself
is repetitive, but quite laborious and time-consuming.

As a solution to this problem, we propose a human-
robot collaboration framework that takes advantage of
human expertise and minimizes the dull, dirty and
dangerous aspects of the manual work. Determining
the cutting locations requires worker’s intuition, and is
difficult to automate. Therefore, the worker’s role is
to mark the desired cutting locations with a distinctive
color spray paint. After this step, the robot autonomously
detects the 3-D curve on the object surface, reconstructs
it, generates a cutting path and executes the cut.

While there are many exciting research questions
within this pipeline, this paper focuses on the curve
acquisition and path generation steps. We do not assume
that the robot has a full view of the curve, nor that the
extremities (start, end) of the curve are in sight. The
drawn curve is reconstructed from partial observations
in an automated process, akin to a simplified, surface-
based active vision problem. We propose a 3-D curve
reconstruction pipeline, while using spatial curve fitting
techniques to obtain a next-view for iterative scanning.
The acquired curve segments are then registered, and the
full cutting path is obtained by generating collision free
set-points at a desired cutting distance, where the cutting
torch is always perpendicular to the object surface. This
path can then be converted to a cutting trajectory by im-
posing tool speed constraints based on the scrap piece’s
properties. Here, we assume that the scrap properties are
entered by the worker, and the robot can use a look-up
table for determining the cutting speed.

IV. IMPLEMENTATION

We present our implementation as in Fig. 2. The
worker provides the desired cutting path in the form of
a drawing, whose specific color is known to the robot
and is distinguishable from its surroundings. Next, the
robot starts scanning this drawing segment by segment,
and stitches them together with the following steps.



Fig. 2. Visual overview of Algorithm 1 resulting in a fully-stitched point cloud of the drawing.

A. Point Cloud Preprocessing and Curve Fitting
This section assumes an eye-in-hand RGB-D setup.

With the initial segment of the drawing in view, we
apply color filtering using HSV color space to obtain the
points that belong to the drawn curve. We, then, apply
statistical outlier removal to eliminate noisy points that
do not belong to the dominant curve. To reduce excess
growth of cloud data, the point clouds are downsampled.

The next step is to fit a curve to the acquired data.
We use two different methods for curve fitting (and later
compare their performance in Section V), namely the
NURBS method and the a skeletonization algorithm.
The NURBS curves have desirable properties for this
pipeline. They are memory-efficient and have a con-
figurable smoothness parameter. Fitting a Bézier curve
to a point cloud (obtained from the RGB-D camera)
is a non-trivial optimization problem, however available
implementations such as the PCL Library [2] provide
NURBS fitting support. The implementation was mod-
ified to allow for open curves. The NURBS curve is
especially robust to noise and gaps in the point clouds.
Its functionality extends to discontinuous mesh shapes.

The skeletonization method’s primary goal is iden-
tifying the set of points equidistant to at least two
boundary points, called medial axis of a 2D image,
or of a 3-D set of voxels. The skeleton obtained is a
voxel-wide representation of a mesh’s connectedness;
useful for working with unstructured point clouds from
the RGB-D camera. The 3-D skeletonization imple-
mentation as used in the pipeline is described in [3].
The skeletonization component gradually thins an image
(removing boundary voxels) until it a voxel-wide line
is left. One limitation of skeletonization comes from
converting raw point clouds into binary voxel occu-
pancy grids whose resolution directly correlates with
the medial axis accuracy. Finer leaf size leads to better
accuracy, but with a robustness tradeoff, as sparsely-
sampled point clouds can lead to fragmented occupancy
(falsely disconnected voxels), thus skeletonization fails.
This trade off is demonstrated in Fig. 3, where increase
in leaf size causes a larger average error in curve fitting.

The fitted curve is used to estimate the curve direction
and determine the next view for curve acquisition.

B. Extrapolation & Exploration using Curve Data

This section describes the core component of the
exploration loop as outlined in Algorithm 1.

Algorithm 1: Exploration Procedure
Result: Fully-stitched point cloud of drawing
end points found ← 0;
k ← 0;
while end points found < 2 do

cloud ← obtain point cloud();
full cloud ← concat(full cloud, cloud);
curve ← fit curve(cloud);

if size diff(k+1, k) <= thresh
then

++end points found;

return to initial point();
else

next pos ← extrapol(curve, cloud);

end
++k;

end

The robot must determine its next end-effector po-
sition to reveal the rest of the drawn line. The next
viewpoint is generated by extrapolating the fitted curve.
A running log of previously visited coordinates avoids
revisiting an explored direction. Due to a lack of prior
knowledge of the target shape, active collision avoidance
is needed using feedback from the RGB-D sensor. For
efficient collision avoidance, octomap [24] is used.

Exploration is done by sampling two points near the
end of the line’s representation. For skeletonization,
those points are the last two voxels on the edge. The
NURBS curve is instead extrapolated by sampling two
points near the parametrized curve’s edge. The robot
moves along the extrapolated chunk by a constrained
distance close enough to the edge to avoid overshoot
and missing unscanned chunks. A conservative estimate
is to move towards the fitted curve’s edge. Although this
slows down scanning, it outputs a more robust line.

There remains three (orientation) plus one (distance-
to-surface) DOFs to constrain. For robot orientation, we
first constrain the end-effector’s direction normally to



the surface, which maximizes scan quality and motion
safety. The end-effector’s rotation about the normal axis,
is kept free to search for collision-free configurations.

The last DOF, the distance-to-surface, can be deter-
mined based on the camera noise model and required
performance. To reduce noise, most cameras should be
placed close to the object surface. An iterative solution
is to start from the camera’s minimum distance and
increment until a collision-free pose is found with a
viable trajectory. However, moving the robot closest to
the surface forces it to move slower along the drawing,
as vision is now constrained to a smaller view of the
drawing, and thus more steps are required for the same
distance. This tradeoff is a user-defined parameter for
the pipeline regarding scanning speed and accuracy.

C. Stopping Criterion and Global Curve Fit

As in Algorithm 1, the agent must detect both end
points to terminate properly. A single endpoint is de-
termined by examining the amount of new information
per step. The agent keeps track of the previous fully-
stitched cloud’s size. After frame k is processed, the
agent registers the new cloud and obtains a new fully-
registered cloud. The stopping criteria compares the
incremented size of the fully-stitched clouds within a
certain threshold: size(k)− size(k − 1) ≤ δsize.

Once this condition is met, the robot backtracks to
unexplored parts of the drawing, and re-runs the loop.
Once the condition is met again, the loop terminates and
the drawing is considered fully-explored. The robot now
has a fully-registered cloud of the entire filtered drawing,
on which it performs global path generation and normal
estimation. The latter improves accuracy by providing
more information to compute the normal planes.

After the fully-stitched cloud is available, we curve-fit
the filtered data using either aforementioned technique.
With skeletonization, we use the smallest possible leaf
size when discretizing the grid, pruning smaller branches
and ensuring all line points are fully-connected through-
out the skeleton. Alternatively, the NURBS method gen-
erates a global fit while minimizing its error by tuning
the control points, degree, or smoothness constraints.

V. SIMULATIONS & EXPERIMENTS

We assess our pipeline with realistic simulations and
provide proof of concept real-robot implementations.

A. Simulations

We developed a simulation environment using the
Robot Operating System (ROS) [25] and the Gazebo
simulator [26] to test our path generation pipeline. Four
real scrap pieces from our industrial partner’s scrap
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Fig. 3. Effect of leaf size on average skeletonization error versus
average NURBS error.

Fig. 4. High-precision scans of real-life metal scrap pieces: (1,1)
I-Beam, (1,2) Basket, (2,1) T-Piece, (2,2) Air Chamber.

yard were scanned to produce high-quality 3-D models
(Fig. 4). These models are used as test objects to
examine the robustness and accuracy of the methods
in various challenging geometries, such as mesh-like
gaps, sharp turns and intricate surface changes. We also
added the cylindrical object shown in Fig. 2 as a simple
shape example. We simulated spray-painted drawings
on these models by loading them in Blender, drawing
a parametric reference curve on the object, and then
generating the drawing from that curve. These curves
are used as baselines for our error calculations. We
emphasize that the object models are not used in the
execution of the path generation pipeline; it does not use
any a priori shape information. A virtual Intel RealSense
D435i RGB-D camera is attached at the end effector of
the robot, and a probabilistic noise model was developed
based on information from the camera datasheet [27].

Two runs are performed on each scrap piece; one



with the NURBS method and one with the skeletoniza-
tion algorithm (10 simulations total). The smoothness
parameter (weight) of the NURBS algorithm is set to
1.0. The skeletonization leaf size is set to 5 mm for all
simulations, except for the basket object (the reasons
are discussed later in this section). The path errors are
presented in Table I. The mean path errors are calculated
along the drawn curve by sampling and averaging the
difference between the ground truth of the drawing and
the resulting path. In addition, the sampled error values
along the basket object is given in Fig. 5.

Overall, the accuracy of both curve fitting methods
is similar and for the simple cylinder shape. More
complex shapes present various challenges, and sig-
nificant differences are obtained for each curve fitting
method. For the air chamber, while the average errors
of both algorithms are similar, the maximum error of
the NURBS algorithm is significantly higher due to the
sharp curvature change towards the top groove, which
violates NURBS smoothness assumptions. Skeletoniza-
tion, on the other hand, relies on thinning and shows
robustness to such sharp corners, having no assumptions
on the input’s smoothness. Similarly, the joint location
of the T-piece causes the NURBS method to have a
much higher maximum error than the skeletonization
algorithm. This difference is very pronounced for the
I-beam, where the curvature change is close to 90
degrees at the joint location. The basket object, however,
showcases the limitations of skeletonization algorithm.
This object features a mesh surface, where the drawing
is not necessarily connected in all the locations, thus
requiring the methods to ”bridge” the gaps. Due to
this feature, the skeletonization algorithm with a 5 mm
leaf size fails due to unconnected voxels, and stops the
execution before completing the whole curve. When we
increase the leaf size to 2 cm, the algorithm successfully
tracks the whole curve, but results in significantly larger
errors compared to the NURBS algorithm (please refer
to the leaf size discussion in Section IV-A and Fig. 3).

B. Experiments

Proof of concept experiments are conducted with
a Franka Emika Panda robot equipped with an Intel
RealSense D435i RGB-D camera attached to its end-
effector. Three artificial shapes and their ”cutting loca-
tions” were prepared as in Fig. 6.

Applying the same pipeline with two different curve
fitting methods, the robot was able to successfully recon-
struct the curves for the planar box and the cylindrical
object. Its execution ended prematurely for both algo-
rithms at the sharp corner of the slanted object, having
only one side reconstructed (Fig. 7). Both algorithms
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Fig. 5. Comparison of the position error across the normalized curve
per method for the basket.

TABLE I
POSITION ERROR FOR ALL OBJECTS IN SIMULATIONS. ALL VALUES

ARE IN MILLIMETERS.

Object Method Mean SD Min Max
Air

Chamber
NURBS 3.61 1.73 2.2 13.37
Skelet. 2.96 1.66 0.42 7.48

Basket NURBS 5.43 2.62 0.11 12.24
Skelet. 11.58 4.71 0.61 19.45

Cylinder NURBS 3.01 1.89 0.30 7.03
Skelet. 3.10 1.35 0.45 6.46

I-Beam NURBS 12.9 10.66 3.40 37.23
Skelet. 6.44 3.11 0.57 13.09

T-Piece NURBS 7.43 4.27 1.08 17.59
Skelet. 4.04 1.69 0.81 7.71

failed to cope with self occlusions of the object. The
curve exploration algorithm thinks that the line is fully-
scanned and finishes the execution. Such limitations may
be addressed via more elaborate active vision methods
that take into account not just the curve fit, but also
information entropy when determining the next view.

Our multimedia attachment presents a realtime exe-
cution of the pipeline with the cylindrical object.

VI. CONCLUSION

In this paper, we proposed a novel workflow for the
solution of the robotic metal scrap cutting problem. This
workflow leverages human expertise and transfers the

Fig. 6. Experimental setup and the three model scrap pieces. From
left to right: slanted object, cylinderical object, planar box.



Fig. 7. Drawings extracted for each method per object in the
experiment. From left to right: Sharp Surface, Cylinder, Planar Box.

operation’s laborious aspects to the robot. We proposed
and implemented a pipeline to acquire the cutting loca-
tions and generate a cutting path autonomously, without
relying on prior object models. We compared two curve
fitting methods in our active exploration scheme, and
demonstrated their advantages and drawbacks.
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