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Research Challenges and Progress in Robotic
Grasping and Manipulation Competitions

Yu Sun, Joe Falco, Máximo A. Roa, and Berk Calli

Abstract—This paper discusses recent research progress in
robotic grasping and manipulation in the light of the latest
Robotic Grasping and Manipulation Competitions (RGMCs). We
first provide an overview of past benchmarks and competitions
related to the robotics manipulation field. Then, we discuss the
methodology behind designing the manipulation tasks in RGMCs.
We provide a detailed analysis of key challenges for each task
and identify the most difficult aspects based on the competing
teams’ performance in recent years. We believe that such an
analysis is insightful to determine the future research directions
for the robotic manipulation domain.

Index Terms—Grasping; Dexterous Manipulation; Perfor-
mance Evaluation and Benchmarking

I. INTRODUCTION

ROBOTIC grasping and manipulation as a research field
had tremendous growth in the last decade. Researchers

have made significant progress in different areas that prevented
robots from reliably handling household items, mechanical
parts, and packages. The progress in robotic grasping and
manipulation has shown new application promises that led to
a renewed interest in robotics from the general public, indus-
try, and government agencies. Nevertheless, the growth and
progress have not been even. Some challenges receive a great
deal of well-deserved attention because they are either obvious
or standing in the way of big commercialization potential.
Some challenges might not be as popular and remain unsolved
for decades, but they could be crucial for many applications.
Some challenges may have changed or vanished because a
new kind of hardware becomes available or an engineering
solution became adequate. A comprehensive overview of the
major challenges not only helps us analyze the history of the
robotic grasping and manipulation field, but also allows us to
determine future research directions. We should keep track of
the challenges, their changes, and the progress made to solve
them. Competitions rooted in real-life applications could be
an ideal vehicle for this purpose.

This paper discusses recent progress in the robotic manipu-
lation field based on the recent Robotic Grasping and Manip-
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ulation Competitions (RGMC)1. For defining the RGMCs, we
designed over 40 grasping and manipulation tasks that reflect
realistic scenarios in service robotics and industry. Each task
has a detailed setup and requirement description and scoring
rules. The task details can be found on the competition web-
pages [1]–[4] and [5], [6]. This paper presents the challenges
and the progress of the competing teams, identifies critical
areas preventing better performance in robotic manipulation,
and provides observations regarding future research directions.

II. BACKGROUND

A. Related Robotic Grasping and Manipulation Benchmarks

Establishing experimentation methodologies that allow
comparison across different research groups is still a pending
challenge in robotics. The large variety in robotic platforms,
setups, and software implementations poses numerous diffi-
culties to achieve common experiment protocols. Even the
pressure to publish plays a role in this lack of comparison, as
applying the benchmarking protocols is a thorough and time-
consuming process, which is sometimes neglected under the
pressure of publication deadlines. In this sense, initiatives such
as the Reproducible Articles (R-articles) of the IEEE Robotics
& Automation Magazine (RAM) [7] aim to encourage easy
reproduction of results via adopting and/or presenting detailed
experiment protocols. Several initiatives of benchmarks for
grasping and manipulation have been proposed, focusing on
different levels of the manipulation system:
Mechanism level: In these types of benchmarks, the intrinsic
capabilities of the mechanisms (often times end-effectors)
are considered and measured. A benchmarking protocol for
assessing and comparing the grasping abilities of robotic hands
is presented in [24]. The benchmark in [25] assesses the
robustness and resilience of the robotic hands by determining
the impulsive conditions that break their grasp and their
mechanism itself. A detailed list of procedures for analyzing
the mechanical properties of the robotic hands is given in [26].
A specific benchmark for compliant hands is provided in [27].
Algorithm level: These benchmarks evaluate the performance
of a specific algorithm in the robotic manipulation pipeline.
The benchmarks in [28], [29] assess the performance of grasp
planning algorithms. In [30], the force control capabilities of
the system are analyzed. A platform-independent method for
quantifying the motion planning performance is presented in

1Certain commercial entities and items are identified in this paper to
foster understanding. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does
it imply that the materials or equipment identified are necessarily the best
available for the purpose.
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TABLE I
ROBOTIC COMPETITIONS INVOLVING MANIPULATION

Competition/Challenge Years Tasks* Focus** Description
Fi Fr Gr Ma As Mm

RoboCup@Home [8] 2006-2021 X X X X X Domestic service tasks, different fixed challenges each year
DARPA Robotics Challenge [9] 2012-2015 X X X X Disaster response scenarios
RoCKIn [10] 2014, 2015 X X X X Two tracks: RoCKIn@Home (domestic environment) and

RoCKIn@Work (factory environment)
European Robotic Challenge
(EuRoC) [11]

2014-2017 X X X X Reconfigurable manufacturing cells, shop floor logistics and
manipulation, and plant servicing and inspection

Amazon Picking Challenge
(APC) [12]

2015-2016 X X X Logistics scenario, retrieving items

IROS Robotic grasping and
Manipulation Competition
(RGMC) [5], [6]

2016-2017,
2019-2020

X X X X Different tracks: service, manufacturing, and logistics

Cybathlon arm prosthesis race
[13]

2016, 2020 X X X Solution of everyday tasks using arm prostheses

Amazon Robotics Challenge
[14]

2017 X X X Logistic environment, as evolution of APC [12], pick and stow
items

ICRA Mobile Manipulation
Challenge [15], [16]

2017, 2019 X X X Navigate, pick and place items

World Robot Challenge (WRC)
[17]

2018, 2021 X X X X Three categories: industrial scenarios (agile manufacturing),
service robotics (home and convenience stores), and disaster
robotics (inspection and maintenance in a plant)

IROS Fan Robotic Challenge
[18]

2018 X X X Pick up and manipulate a Spanish fan

IROS Mobile Manipulation
Hackathon [19]

2018 X X X X Freely-chosen application to showcase both mobility and ma-
nipulation

RoboSoft Competition [20] 2018-2021 X X X Industrial, surgical or domestic scenarios in the manipulation
track

Smart City Robotics Challenge
(SciRoc) [21]

2019, 2021 X X X Different episodes, or challenges, in domestic and logistic
scenarios

OCRTOC, Open Cloud Robot
Organization Challenge [22]

2020, 2021 X X X Table reorganization problem, tested in a remote lab

Real Robot Challenge [23] 2020-2021 X X X Grasping and in-hand manipulation tasks in a remote platform
*Tasks: Fi: Fixed, Fr: Free
**Focus: Gr: Grasping, Ma: Manipulation, As: Assembly, Mm: Mobile manipulation

[31]. Object segmentation and pose estimation data sets and
benchmarks are commonly used in the robotics and computer
vision community, with recent examples in [32], [33].
System level: These benchmarks consider the task perfor-
mance of a robotic system as a whole, fully integrated au-
tonomous solution (perception, planning, control). The box
and blocks test in [34] assesses the pick-and-place perfor-
mance of a robotic system. Similarly, pick-and-place abilities
in logistics scenarios are evaluated in [35]. Inspired by the
Amazon Picking Challenge, a shelf picking benchmark is pre-
sented in [36]. In-hand manipulation performance is quantified
in [37]. Assessment for various challenging manipulation tasks
such as cloth [38], bimanual [39] and aerial [40] are also
provided as system-level benchmarks.

B. Related Competitions and Challenges

The robotics community has a long history in organizing
competitions and challenges. Over the last decade, there have
been multiple competitions that involve robotic manipulation
in different degrees of complexity, pushing forward the re-
search in the field. The competitions focus on different aspects,
such as pure grasping, manipulation, assembly, or even mobile
manipulation, as summarized in Table I. In terms of tasks,
those competitions adopt two approaches:

• Completing a fixed set of tasks: the environment, objects,
and rules are defined in advance. Thus, the tasks pro-

vide an objective measure of progress intra-edition, i.e.,
comparison of performance of different teams, and inter-
edition, i.e., measuring progress across different years on
the same set of tasks. The disadvantage of this approach
is that teams usually over-engineer their solution (or work
around the rules) to fulfill the intended task.

• Demonstration of a freely-chosen application: this open
format allows the teams to demonstrate their strengths in
a self-selected scenario, usually following very general
constraints, e.g., using a common robotic platform or
demonstrating tasks that include prescribed components.
The disadvantage is that demonstrations are hardly com-
parable among them.

The Robotic Grasping and Manipulation Challenge
(RGMC) uses system level benchmarks and defines a fixed set
of tasks in each track to be solved using a robot manipulator.
The descriptions of the tasks are provided in the next section.

III. TASK DESIGNS

To evaluate robotic systems’ capability, we have designed
over 40 real-life tasks based on our knowledge of the research
challenges in robotic grasping and manipulation. All these
tasks have detailed protocols, rules, and scoring policies. For
instance, the task descriptions and rules of the 2016 and 2017
RGMCs can be found in [5]. Each competition comprises
challenges that span a large set of robotic manipulation
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Fig. 1. Task setups based on perception challenges. Description of the tasks
is provided in Table II.

capabilities with varying difficulty levels. Easier tasks are
expected to be solved by most teams, while some challenging
tasks are not expected to be fully accomplished by any of
the teams. Such variety in difficulty serves multiple purposes:
Easier tasks encourage participation and constitute a starting
point for new robotics researchers. Challenging tasks aim
to differentiate the most successful teams while encouraging
robot/algorithm design and integration innovation. Limited by
natural constraints of the competition settings (e.g., timeline,
space, and equipment), the tasks are carefully composed to
appeal to a large group of researchers and research interests.
Therefore, some of the tasks that were selected in a certain
year might be replaced by others in the following years, even
though the teams did not fully accomplish them.

Here we present the tasks in the RGMCs according to the
research challenges associated with them. There are plenty
of unsolved research challenges in perception, grasping, ma-
nipulation, and mechanical design trade-offs for both real-time
service tasks as well as for manufacturing/assembly tasks [41].

A. Research Challenges in Perception

Perception is critical to most robotic grasping and manipula-
tion tasks. A significant amount of work has been dedicated to
solving various challenges in robotic perception and, over the
years, we have seen great improvement, especially after depth
cameras became widely accessible and high-precision tactile
sensors became less expensive. However, many challenges
remain unsolved, and while designing our competitions we
highlight these challenges to gauge progress.

1) Objects with shiny surfaces: Computer vision has a
long-standing difficulty in dealing with shiny objects. Because
of the reflection, some shiny surface areas cannot be well-
perceived by vision sensors. The missing areas make segmen-
tation and pose estimation difficult, and drop the success rate
of grasping and manipulation algorithms. In RGMCs, we have
several objects with shiny surfaces, such as the silverware
sets, 2017 RGMC (Fig. 1a) and spoons and tongs, 2019/2020
RGMCs (Fig. 1b). Also, parts such as the plastic assembly
base (task board) and metallic components in manufacturing
tasks (Fig. 1g) can present perception difficulties.

TABLE II
TASKS REFLECTING PERCEPTION CHALLENGES

Research challenges Tasks
Shiny objects -Pick up silverware (Fig. 1a)

-Pick up a a polished spoon for stirring (Fig. 1b)
-Pick up metal tongs to get ice cubes (Fig. 1b)
-Pick up metal pegs for insertion
-Locate insertion holes on task board

Translucent objects -Pick up transparent cup lid (Fig. 1c)
-Pick up ice cubes (Fig. 1d)
-Pour a certain amount of water into a cup
(Fig. 1e)

Precision/accuracy -Insert electrical connectors (Fig. 1f)
-Insert pegs, fasteners (Fig. 2f)
-Insert gears (Fig. 3b)
-Insert/route belts (Fig. 1g)

2) Translucent or transparent objects: Translucent objects
are also very challenging for robotic vision. In all four
RGMCs, we have translucent to-go cups and lids (Fig. 1c).
We have also introduced a pile of ice cubes for a picking task
in the last two RGMCs. In general, the sensing aspect of the
ice cube picking task is more challenging than the sensing
for picking up a to-go cup and a lid, since the to-go cups
and lids are standalone objects on the table, and they occupy
a significant space to approximate their pose. On the other
hand, the ice cubes are randomly piled up in an ice bucket
(Fig. 1d), and determining the pose of an individual ice cube
among other (also translucent) ice-cubes within a translucent
ice bucket is a very challenging task. In 2017 RGMC, the
competition requested to pour a certain amount of water into
a cup. Estimating the amount of water in the cup also provides
a significant challenge since it is transparent (Fig. 1e). There
are currently no translucent or transparent objects used for the
manufacturing tasks.

3) Tasks requiring high precision or accuracy: Tasks with
tight tolerances usually require the perception part of the
system to be precise. For typical peg-in-hole problems such
as plugging a Universal Serial Bus (USB) light into a socket
(Fig. 1f), a robot would need to use vision to precisely
localize the socket. To compensate for the inaccuracies of
the localization, an exploration algorithm or a failure recovery
approach is often times needed. Using force sensors to guide
corrective motions is a common example of such exploration
strategies.

4) Other challenges: Service track objects are provided to
teams prior to competitions depending on type and difficulty.
This time can range from hours to days. The teams usually
utilize this time to collect data and learn models for object
identification, segmentation, and planning. While developing
techniques to model the objects in a short amount of time
under a semi-controlled environment is a challenge, obtaining
prior models of the objects significantly reduces the percep-
tion and planning difficulties of the task. If the objects are
unknown (no learning data or models), the tasks could be
much more difficult. However, for real service applications,
learning object models is typically not feasible. In the case
of the manufacturing track, design data is typically known,
so all components and Computer Aided Design (CAD) data
are provided to teams weeks in advance to the competition.
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Fig. 2. Tasks reflecting grasp challenges. Description of the tasks is provided
in Table III.

At the start of the competition all teams are given updated
CAD data that reflects changes in the challenge tasks from
the practice tasks, which imitates challenges associated with
product changes in batch type production runs.

Table II summarizes the tested perception challenges and
the tasks reflecting them in the RGMCs.

B. Research Challenges in Grasping

1) Grasping with imperfect perception: Perception errors
cause most failures in grasping. If the object’s pose is esti-
mated seriously wrong, the robot could knock over the object
or push it away, end up with an unstable grasp, or completely
miss the object. For end-to-end approaches, even if there is no
separated pose estimation step, the noise in perception layers
still dramatically affects the grasp results. Unfortunately, it
is almost impossible to have “perfect” perception. Noise can
always find a way to creep in. So grasping approaches should
be prepared to deal with perception uncertainties. In RGMC,
most tasks require robots to handle a bad grasp caused by
perception errors since many tasks have challenging objects.

2) Objects with challenging shapes and surfaces: Even
with perfect vision, some objects can still be challenging to
pick up or manipulate. It could be because there is a minimal
good surface area for grasping. Curved and narrow surfaces

TABLE III
TASKS REFLECTING GRASP CHALLENGES

Research challenges Tasks
Objects with chal-
lenging shapes and
surfaces

-Cut a piece of paper using a pair of scissors
(Fig. 2a)
-Transfer a cup on its saucer (Fig. 2b)

Grasp in clutter -Pick and place objects from a shopping basket
(Fig. 2c)
-Pick up silverware from a silverware organizer
(Fig. 1a)

Regrasp -Assemble fasteners
-Use a spoon to stir water in a cup (Fig. 2d)
-Use a spoon to pick up peas (Fig. 2e)

Grasp for manipula-
tion

-Hammer a nail (Fig. 2g)
-Stir water with a spoon (Fig. 2d)
-Assemble/disassemble electrical connectors
(Fig. 2i)
-Insert pegs (Fig. 2j)
-Insert/screw fasteners (Fig. 2f)
-Insert/mesh gears (Fig. 3b)
-Insert/rout belts/wires (Fig. 2k,l)

Grasp for in-hand
manipulation

-Fully extend and fully press syringe (Fig. 2h)
-Grasp and use scissors to cut a piece of paper
to half along a line (Fig. 2a)
-Pick up ice cubes using tongs (Fig. 1d)

are challenging to grasp. For example, the curved finger rings
of a pair of scissors pose a significant challenge to a robotic
hand (Fig. 2a). Holding and manipulating scissors with them
are both very difficult. Another challenging task is to pick up
a saucer with a cup on it with one hand, since it is difficult to
hold the edge of the saucer and balance the unknown torque
generated by the cup’s weight (Fig. 2b).

3) Grasping objects in clutter: Picking up an object in
clutter is quite challenging. Its neighbor objects could block
the robotic hand and pose planning difficulties, since usually
a gripper would need to grasp on two sides of the object, and
the hand approaches from another side. One task that reflects
this challenge is picking objects from a shopping basket and
placing them in defined areas (Fig. 2c). Grasping objects in
clutter for manipulation is more challenging since the object
would need to be held in a certain way to provide needed
manipulability [5] and interactive force [42]. Therefore, the
grasping points and orientations for manipulation are more
limited than for picking. When objects are in clutter, a robotic
hand may not be able to reach and grasp the object in the
desired way. For example, in the stirring water task (Fig. 2d),
and pea-picking using a spoon task (Fig. 2e), the spoons are
in a silverware organizer and they are difficult to pick up.

4) Regrasping: A robot may pick up an object in one grasp
but may need to change to a different grasp for manipulation.
Then the robot would need to regrasp the object after it is
picked up. As mentioned before, in both stirring and pea-
picking tasks, the grasp of the spoon should be adjusted after
it is picked up. In the task of putting on or removing a bolt
from a nut with a nut driver, since multiple turns are required, a
robotic hand would need to regrasp the nut driver to overcome
the rotation limit of the wrist (Fig. 2f). Due to the number of
fasteners, making regrasp operations efficient is challenging.

5) Grasping for manipulation: For some manipulations, an
object should be grasped in a certain way so that the manipula-
tion can be performed efficiently and the object has less chance
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Fig. 3. Tasks reflecting manipulation challenges. Description of the tasks is
provided in Table IV.

of being dropped during the operation [43], [44]. We have
designed nail hammering (Fig. 2g) and water stirring tasks
to gauge if the team considers the manipulation requirements
in grasp planning. Performing force-based manipulation for
insertions requires adequate grasping force to avoid move-
ment of the object within grasp and ultimate insertion failure
(Fig. 2j). In addition, grasping non-rigid objects to effectively
control their shape, as in threading belts on pulleys (Fig. 2k)
and wire routing (Fig. 2l), is a very challenging problem.

6) Grasping for in-hand manipulation: In-hand manipula-
tion is still a very challenging research area. We have designed
several tasks that would require some in-hand manipulation
after grasping. These include extending and pressing a syringe
(Fig. 2h), cutting paper with a pair of scissors (Fig. 2a), and
using tongs to pick up ice cubes (Fig. 1d), but they have not
been satisfactorily solved so far.

Table III summarizes the tested grasp challenges and the
tasks reflecting them in the RGMCs.

C. Research Challenges in Manipulation

Manipulation motions can usually be generated with motion
planning and motion control. In general, the challenges in
manipulation are caused by imperfect perception and the
lack of capability to predict a motion’s outcome. Both can
be extremely challenging. In RGMCs, since the objects are
provided to the teams beforehand (at least for several hours),
they can model the objects and their behaviors to a certain
extent, which dramatically reduces the challenges. However,
several tasks remain challenging because either the tolerance
is tight or the behaviors are difficult to model. For instance,
peg-in-hole tasks and tightening or loosening bolts (Fig. 3d)
require purposeful motions. Tearing up a paper towel (Fig. 3a)
and pouring water (Fig. 3b) require the robot to predict the
kitchen roll motion and water flowing speed in response to a
motion. Opening a bottle with a locking safety cap (Fig. 3c)
is a task that requests the robot to predict a pressing outcome.
Since it is repeatable, it is easier to model than water and cloth.

TABLE IV
TASKS REFLECTING MANIPULATION CHALLENGES

Research challenges Tasks
Manipulation with
imperfect perception

-Solve peg in hole with a wood board
-Assemble/disassemble electrical connectors
-Insert pegs (Fig. 2j)
-Insert/screw fasteners (Fig. 3d)
-Insert/mesh gears (Fig. 3b)

Manipulation that
needs accurate
prediction

-Open a water bottle cap and pour water into a
to-go cup
-Pour water from a pitcher into a cup (Fig. 1e)
-Tear a paper towel (Fig. 3a)
-Open a bottle with a locking safety cap
(Fig. 3c)
-Threading flexible belts (Fig. 3e)
-Routing wires (Fig. 3f)

Assembling flexible belts and routing wires, while difficult,
becomes more achievable with practiced routines and the use
of CAD data. Table IV summarizes the tasks reflecting those
challenges in the RGMCs.

IV. RESULTS AND PROGRESS

Each year, seven to ten teams passed the initial screening
and participated in the competition. Teams are from world-
renowned research groups in universities, prominent startups,
and large corporations. We can see that their improvement in
performances aligns with the progress made by the robotics
research community over the same period of time. Though
their performance might not represent the absolute best solu-
tions available at the time, their successes and struggles in the
RGMCs reflect research progress and remaining challenges.

A. Overview
In the four RGMCs, twenty-three tasks have been used

to measure the contestant’s performance in the service track,
some used in multiple years with stricter requirements toward
achieving real-world application. In the beginning, in 2016, the
teams were allowed to predefine the locations of the objects
with little to no randomness. Then in 2017 and afterward,
the teams were only allowed to define object regions based
on the robot’s workspace and the organizers randomly placed
the objects in those regions. In 2016 and 2017, only the best
possible result for every task was counted, while in 2019 and
2020, the total score of five trials was counted. In 2019, the
total allowed time was 90 minutes, while in 2020, the total
allowed time was 60 minutes. The manufacturing track was
first introduced in 2017, and teams were allowed to set the
position of the task board and kit layout, and optional random
placement provided bonus points. The dominant solution was
the use of lead-through programming. To encourage the use of
perception, in 2019 and 2020 randomized placement was re-
quired and CAD data was supplied as an option for extracting
locations of assembly components on both the task board and
kit layout relative to a coordinate frame. While the 2017 task
board contained only insertion and fastening operations, the
2019 and 2020 task boards introduced wire routing and belt
on pulley operations. The supplemental document2 provides

2https://rpal.cse.usf.edu/competition iros2021/
Supplemental-RA-L-RGMC.pdf
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details of the tasks, the best scores, unsolved tasks, and
performances of the RHGM teams based on the data and
organizers’ observation.

B. Research Progress and Challenges in Perception

1) Objects with shiny surfaces: In 2016, teams were strug-
gling with silverware due to their shiny surfaces. In 2020,
several teams could reliably segment a shiny spoon from other
spoons and estimate its pose for grasping. They managed the
reflection by controlling the lighting using multi-flash, similar
to the technique in [45]. Objects with shiny surfaces may not
be a significant challenge if the object model is known and its
location variation is limited.

2) Translucent or transparent objects: Translucent objects
still pose a significant challenge to perception, especially for
randomly stacked objects such as ice cubes in a bucket. No
team was able to finish the picking ice cube task. For the
pouring task, all teams completed it using hard-coded pouring
motions. We do not think any team could estimate the water
level in the receiving cup when the water is transparent. Even
though several promising pouring approaches are available,
none of the teams used them. So, when an object is truly
transparent, alternative perception other than vision could be
used. On the other hand, randomly stacked translucent objects
are still very challenging.

3) Tasks requiring high precision or accuracy: In plugging
a USB light into a socket task, several teams were able to
finish the task. Some teams are slower than others. But in
general, the peg-in-hole problem is not a significant challenge
if both models are known.

C. Research Progress and Challenges in Grasping

1) Grasp with imperfect perception: Teams in RGMCs
have gradually incorporated approaches to handle perception
uncertainties, since they found that it was one of several
major reasons that make their solutions slow and unreliable.
It is a significant challenge that requires both research and
engineering work.

2) Objects with challenging shapes and surfaces: Teams
have explored several options and made good progress. Several
teams tried an automatic tool-change approach that allows
them to swap grippers. Several grippers were designed and
made to deal with challenging shapes and surfaces. Some
others developed a gripper that incorporates multiple fixtures.
They can flip or rotate so that the right fixture is in contact
with the object. Many smart and inspiring designs have come
out, but they are tailored and calibrated on known objects. It
is a significant challenge for cases with unknown objects or
under unseen situations.

3) Grasp objects in clutter: RGMCs only have several tasks
with objects in clutter, and the level of cluttering is moderate.
On the one hand, we observed the teams made progress over
the years in dealing with closely lying objects. But on the other
hand, we also observed that cluttered environments still slowed
down their performance dramatically. So it is still a challenge,
and we would expect it is more difficult if the objects are
unknown and the situations are new.

4) Regrasp: Many tasks require the robot to adjust the
grasp after picking up an object. We have observed many
teams put down the object and used the setup to position
or orient the object in a certain way and then regrasped
it. Many of the pick-place-regrasp routines are well crafted
and impressive. However, teams have been avoiding in-air
regrasp even it would be more efficient. Adjusting a grasp
or regrasping in the air is still very challenging.

5) Grasp for manipulation: Several tasks require grasp
planning while considering manipulation requirements. We
have mostly seen that teams predefine several grasp points
based on their experiences and simulations. As far as we know,
teams have avoided computing and searching for proper grasp
points on the fly. The approach would fall apart if the objects
are unseen or different from the provided models. For known
objects, the predefined grasp point approach seems sufficient.

6) Grasp for in-hand manipulation: In-hand manipulation
remains the biggest challenge, where teams have been unable
to complete tasks that utilize scissors, syringes, and tongs.
These tasks, in most cases have been removed from RGMC
due to their high difficulty.

D. Research Progress and Challenges in Manipulation

1) Manipulation with imperfect perception: Many teams
have no problem dealing with tasks testing manipulation with
imperfect perception. In general, the available object models
and setups and tactile/force sensors allow teams to complete
those tasks successfully.

2) Manipulation that needs accurate prediction: Teams did
little in predicting the outcomes of a manipulation action.
Most manipulation motions were generated based on obstacle
avoidance. As far as we know, they have avoided modeling
dynamics. They usually created a list of possible outcomes
and matched a set of predefined motion strategies to those
outcomes. This approach is not sufficient when dealing with
flexible objects and fluids, since a finite enumeration of the
states of those objects is usually not feasible. Even though
the teams have not provided satisfactory solutions, we believe
that recent research progress could be used to solve some
of the challenges [46], [47]. Table V summarizes the tested
challenges and the progress in the RGMCs.

V. DISCUSSION AND FUTURE DIRECTIONS

This paper provided an overview of the tasks and challenges
proposed in the RGMCs. Different from many evaluation
setups in the literature, competitions such as RGMC usually
require participants to run demos at a certain time and to com-
plete tasks in a limited amount of time. In addition, participants
usually do not have total control of the setup, making the
competition setup realistic to real-world applications.

Over the years, we have seen that tasks that were initially
deemed as hard, have been solved using different ingenious
approaches. Especially in the first editions, teams tried to solve
the most difficult challenges with highly-engineered solutions.
But with progress made in research, we have seen less and less
hard-coded routines, less use of predefined grasp points, which
have led to solutions becoming more effective and reliable.
For software, the most significant challenges identified by
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TABLE V
PERCEPTION CHALLENGES AND PROGRESS

Research challenges Progress
Shiny objects Mostly solved for standalone objects if their

models are known.
Translucent objects Still very challenging for randomly stacked

translucent objects.
Requiring high pre-
cision or accuracy

Largely manageable if the objects are known.
Implementations are incorporating force control
and CAD data.

Grasp with imper-
fect perception

It is the major reason that solutions are slow
and unreliable. It is a significant challenge that
requires research and a lot of engineering work.

Objects with chal-
lenging shapes and
surfaces

It remains a significant challenge even though
special-purpose grippers and fingers are de-
signed.

Grasp objects in
clutter

It is still a challenge, and we would expect it
is more difficult if the objects are unknown and
the situations are new.

Regrasp Many teams developed impressive pick-place-
regrasp routines, but adjusting a grasp or re-
grasping in the air is still very challenging.

Grasp for manipula-
tion

For manipulating known objects in a known
condition, the predefined grasp point approach
seems to work well. However, this approach
would fall apart if the objects are unseen or the
conditions are new.

Grasp for in-hand
manipulation

In-hand manipulation remains the most difficult
challenge, as it requires accurate prediction of
the motion effects and suitable control of the
end effector.

Manipulation with
imperfect perception

The available object models, design data, and
tactile/force sensors allow teams to complete
those tasks successfully.

Manipulation that
needs accurate
prediction

Teams have avoided modeling dynamics for
prediction, even though recent research progress
could be used to solve some of the challenges.

the teams are related to perception. The arrival of learning-
based approaches has facilitated solving tasks that use known
objects, as they can be readily available for system training.
The generality of such approaches to be applicable to familiar
and fully unknown objects is still a large challenge. Learning-
based approaches have been also lately used for defining grasp-
ing configurations, thus avoiding the reliance on predefined
grasp poses. For motion planning, most teams relied on open
libraries, such as the Open Motion Planning Library (OMPL)
[48] or MoveIt [49], and using Robot Operating System (ROS)
[50] in most cases as middleware. These openly-available
resources enable teams to more efficiently create solutions.

We saw that some of the RGMC tasks still represent a sig-
nificant challenge. The most clear example are tasks requiring
some degree of in-hand manipulation, which were effectively
removed from the last RGMC editions. This reflects the state
of industry, where most end-effectors are two-finger grippers
that are used for pick-and-place tasks. Industrial applications
usually prefer to design special fingertips for grasping different
types of objects, or using a robot accompanied by a tool
changer that endows the robot with the ability to switch
end-effectors for performing multiple tasks. The promised
generic dexterity of multi-finger end-effectors still seems more
a research topic rather than a viable commercial solution,
mainly due to the higher mechatronic and control complexity
and higher cost associated with multi-finger grippers.

There has been a significant increase in manufacturing

track solutions that utilize CAD data. Typically, perception
or force solutions are used to localize the task board with
subsequent localization of part assembly points on the task
board using CAD data. Improvements to the CAD pipeline
could result in improved data formats to transmit dimensions,
geometric features, relative part positions, mating descriptions,
and tolerances from CAD systems. In addition, the inclusion of
force-based assembly parameters within a CAD system, which
could be best specified by a designer who is most familiar
with the mechanical properties of the parts to be assembled,
should be considered. Methods for automatic robot program
generation using this data should also be considered.

In terms of robotic devices, participants have used a full
range, from experimental robotic hands and arms to off-
the-shelf robot arms and simple parallel grippers. Hardware
for perception is nowadays relatively standard, with depth
cameras dominating the landscape, although different teams
have been using other types of sensors (stereo cameras, laser-
based perception, in-hand cameras). Integration of different
hardware and software components remains, however, a large
challenge, requiring hours of dedication to reach a stable and
robust execution during the demonstrations. In most RGMC
editions, teams had to transport their own equipment to the
competition locations. The pandemic required the 2020 edition
to be a fully online competition, which greatly alleviated the
logistics for participation of teams around the world. Moving
toward a standard remote lab for testing different approaches
for solving a set of tasks seems like a reasonable approach
to enhance comparability and reproducibility of results in
robotics in the near future.

New robot designs provide improved methods for fast
lead-through programming using direct interactions between
the operator and the robot. Teams leveraging these solutions
typically score well by programming the most difficult high
scoring tasks first, to accumulate as many points as possible
within a given time frame. Competition format changes to
discourage solutions that only use lead-through programming
could include: a required part assembly order, less tasks per
board, and unknown task board offset and part variations.

Several successes have ensued RGMC teams. Dorabot [51],
for instance, participated in the 2016 and 2017 RGMC com-
petitions with prototypes of their dexterous modular robotic
three-fingered hand, which is now a product. Focused on
robotic logistic solutions, the company now has products in-
cluding a five-fingered hand, and mobile manipulators. Robotic
Materials [52] emerged as a startup out of the University
of Boulder following the RGMC 2016/2017 competitions,
and participated in RGMC 2019/2020 competition using their
prototype smart gripper, which integrated position, force, and
depth camera sensing modalities. Their work on this grip-
ping system continues with the development of easy-to-use
programming interfaces aimed at small- and medium-sized
manufacturers. Southern Denmark University [53] research
focuses on the development of a flexible workstation for au-
tomated assembly tasks that can be used commercially. Their
generalized solution is proving to be robust and streamlined,
achieving the first ever perfect score in the 2020 RGMC
Manufacturing Track.
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